Understanding cortical organization is key to understanding brain function. Distinct neural networks underlie the functional organization of the cerebral cortex; however, little is known about how different nodes in the cortical network interact during perceptual processing and motor behavior. To study cortical network function we examined whether the optical imaging of intrinsic signals (OIS) reveals the functional patterns of activity evoked by electrical cortical microstimulation. We examined the effects of current amplitude, train duration, and depth of cortical stimulation on the hemodynamic response to electrical microstimulation (250-Hz train, 0.4-ms pulse duration) in anesthetized New World monkey somatosensory cortex. Electrical stimulation elicited a restricted cortical response that varied according to stimulation parameters and electrode depth. Higher currents of stimulation recruited more areas of cortex than smaller currents. The largest cortical responses were seen when stimulation was delivered around cortical layer 4. Distinct local patches of activation, highly suggestive of local projections, around the site of stimulation were observed at different depths of stimulation. Thus we find that specific electrical stimulation parameters can elicit activation of single cortical columns and their associated columnar networks, reminiscent of anatomically labeled networks. This novel functional tract tracing method will open new avenues for investigating relationships of local cortical organization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3882772PMC
http://dx.doi.org/10.1152/jn.00879.2012DOI Listing

Publication Analysis

Top Keywords

cortical
11
optical imaging
8
cortical organization
8
cortical network
8
stimulation
8
electrical stimulation
8
stimulation parameters
8
imaging cortical
4
networks
4
cortical networks
4

Similar Publications

Synchronization stability of epileptic brain network with higher-order interactions.

Chaos

January 2025

Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.

Generally, epilepsy is considered as abnormally enhanced neuronal excitability and synchronization. So far, previous studies on the synchronization of epileptic brain networks mainly focused on the synchronization strength, but the synchronization stability has not yet been explored as deserved. In this paper, we propose a novel idea to construct a hypergraph brain network (HGBN) based on phase synchronization.

View Article and Find Full Text PDF

Healthy brain aging involves changes in both brain structure and function, including alterations in cellular composition and microstructure across brain regions. Unlike diffusion-weighted MRI (dMRI), diffusion-weighted MR spectroscopy (dMRS) can assess cell-type specific microstructural changes, providing indirect information on both cell composition and microstructure through the quantification and interpretation of metabolites' diffusion properties. This work investigates age-related changes in the higher-order diffusion properties of total N-Acetyl-aspartate (neuronal biomarker), total choline (glial biomarker), and total creatine (both neuronal and glial biomarker) beyond the classical apparent diffusion coefficient in cerebral and cerebellar gray matter of healthy human brain.

View Article and Find Full Text PDF

Objectives: Endoplasmic reticulum (ER) stress-induced protein homeostasis perturbation is a core pathological element in the pathogenesis of neurodegenerative diseases. This study aims to clarify the unique role played by C/EBP homologous protein (CHOP) as a biomarker of the unfolded protein response (UPR) in the etiology of chronic pain and related cognitive impairments following chronic constrictive nerve injury (CCI).

Methods: The memory capability following CCI was assessed utilizing the Morris water maze (MWM) and fear conditioning test (FCT).

View Article and Find Full Text PDF

The dorsolateral prefrontal cortex (dlPFC) is increasingly targeted by various noninvasive transcranial magnetic stimulation or transcranial current stimulation protocols in a range of neuropsychiatric and other brain disorders. The rationale for this therapeutic modulation remains elusive. A model is proposed, and up-to-date evidence is discussed, suggesting that the dlPFC is a high-level cortical centre where uncertainty management, movement facilitation, and cardiovascular control processes are intertwined and integrated to deliver optimal behavioural responses in particular environmental or emotional contexts.

View Article and Find Full Text PDF

We aim to understand whether tremor may be an intrinsic feature of juvenile myoclonic epilepsy (JME) and whether individuals with JME plus tremor experience a different disease course. Thirty-one individuals with JME plus tremor (17 females, mean age = 33.9 ± 13.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!