The neutral lipid fraction of the aerobically grown starter yeast culture of a Saccharomyces cerevisiae brewing strain, and three-first recycled yeast generations exposed to multiple stress factors during beer fermentation was studied. No pronounced changes in the cellular neutral lipid content between the non-stressed starter and stressed recycled cells were found. However, it was found that recycled yeast generations modulate their neutral lipid composition during fermentation. The ergosterol content was increased at the expense of steryl esters (SEs) and squalene, which resulted in a higher ergosterol/SEs molar ratio and a slightly higher ergosterol/squalene molar ratio. In addition, the proportion of unsaturated fatty acids, mainly palmitoleic acid increased in the neutral lipid fraction of the stressed recycled yeast generations. These results suggest that some specific neutral lipid species and fatty acids stored in the neutral lipid fraction are involved in the adaptive response of the brewer's yeast to stressful fermentation conditions. The striking finding was a high squalene content in the neutral lipid fraction of both the starter yeast culture and recycled yeast generations (22.4 vs. 19-20%, respectively), implying a possible biotechnological exploitation of this biologically active molecule from the yeast biomass.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11274-009-0297-7 | DOI Listing |
Int J Nanomedicine
January 2025
Department of Pharmaceutical Sciences, School of Pharmacy, Lebanese American University, Byblos, Lebanon.
Introduction: Androgenetic alopecia (AGA) is a multifactorial and age-related dermatological disease that affects both males and females, usually at older ages. Traditional hair repair drugs exemplified by minoxidil have limitations such as skin irritation and hypertrichosis. Thus, attention has been shifted to the use of repurposing drugs.
View Article and Find Full Text PDFLipid droplets (LDs) are organelles that store and supply lipids based on cellular needs. While mechanisms preventing oxidative damage to membrane phospholipids are established, the vulnerability of LD neutral lipids to peroxidation and protective mechanisms are unknown. Here, we identify LD-localized Ferroptosis Suppressor Protein 1 (FSP1) as a critical regulator that prevents neutral lipid peroxidation by recycling coenzyme Q10 (CoQ10) to its lipophilic antioxidant form.
View Article and Find Full Text PDFAnal Chem
January 2025
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Bunsen-Kirchhoff-Straße 11, D-44139 Dortmund, Germany.
The identification of polar and neutral lipid species as biomarkers in complex biological samples is a key task in clinical and life sciences. Electrospray and plasma-based ionization techniques are necessary to cover the full range of lipidomes, owing to their limited molecular polarity ranges. However, combining both to generate hybrid spectra is difficult without averaging spectra, as electrospray and plasma sources operate under vastly different conditions.
View Article and Find Full Text PDFJ Chem Inf Model
January 2025
Unit of Biophysics, Department of Biochemistry and Molecular Biology, Facultat de Medicina, Av. Can Domènech s/n, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain.
Cell-penetrating peptides (CPPs) can translocate into cells without inducing cytotoxicity. The internalization process implies several steps at different time scales ranging from microseconds to minutes. We combine adaptive Steered Molecular Dynamics (aSMD) with conventional Molecular Dynamics (cMD) to observe nonequilibrium and equilibrium states to study the early mechanisms of peptide-bilayer interaction leading to CPPs internalization.
View Article and Find Full Text PDFMol Psychiatry
January 2025
Icahn School of Medicine at Mount Sinai, Departments of Neuroscience, Psychiatry; Addiction Institute of Mount Sinai, New York, NY, USA.
Anxiety disorders are one of the top contributors to psychiatric burden worldwide. Recent years have seen a dramatic rise in the potential anxiolytic properties ascribed to cannabidiol (CBD), a non-intoxicating constituent of the Cannabis Sativa plant. This has led to several clinical trials underway to examine the therapeutic potential of CBD for anxiety disorders.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!