Problems and solutions in laboratory testing for hemophilia.

Semin Thromb Hemost

Department of Haematology, Institute of Clinical Pathology and Medical Research (ICPMR), Pathology West, Westmead Hospital, Westmead, New South Wales, Australia.

Published: October 2013

A diagnosis of hemophilia A or hemophilia B begins with clinical assessment of the patient and is facilitated by laboratory testing. The influence of the latter on a diagnosis of hemophilia A or hemophilia B is clear-a diagnosis cannot be made without laboratory confirmation of a deficiency of factor FVIII (FVIII) or factor IX (FIX), respectively. Moreover, the degree of hemophilia severity is specifically characterized by laboratory test results. In turn, patient management, including choice and application of therapies, is influenced by the diagnosis, as well as by identification of respective disease severity. An incorrect diagnosis may lead to inappropriate management and unnecessary therapy, and thus to adverse outcomes. Moreover, identification of factor inhibitors in hemophilia will lead to additional and differential treatments, and incorrect identification of inhibitors or inhibitor levels may also lead to inappropriate management. Problems in hemophilia diagnosis or inhibitor detection can occur at any stage in the clinical diagnosis/laboratory interface, from the "pre-preanalytical" to "preanalytical" to "analytical" to "postanalytical" to "post-postanalytical." This report outlines the various problems in laboratory testing for hemophilia and provides various strategies or solutions to overcome these challenges. Although some outlined solutions are specific to the potential errors related to hemophilia, others are general in nature and can be applied to other areas of laboratory hemostasis. Key to improvement in this area is adoption of best practice by all involved, including clinicians, phlebotomists, and laboratories. Also key is the recognition that such errors may occur, and thus that clinicians should assess laboratory test results in the context of their patient's clinical history and follow-up any potential errors, thus avoid misdiagnoses, by requesting repeat testing on a fresh sample.

Download full-text PDF

Source
http://dx.doi.org/10.1055/s-0033-1356573DOI Listing

Publication Analysis

Top Keywords

laboratory testing
12
hemophilia
10
testing hemophilia
8
hemophilia diagnosis
8
diagnosis hemophilia
8
hemophilia hemophilia
8
laboratory test
8
lead inappropriate
8
inappropriate management
8
potential errors
8

Similar Publications

Background: Predicting response to targeted cancer therapies increasingly relies on both simple and complex genetic biomarkers. Comprehensive genomic profiling using high-throughput assays must be evaluated for reproducibility and accuracy compared with existing methods.

Methods: This study is a multicenter evaluation of the Oncomine™ Comprehensive Assay Plus (OCA Plus) Pan-Cancer Research Panel for comprehensive genomic profiling of solid tumors.

View Article and Find Full Text PDF

Presurgical anxiety and acute postsurgical pain predict worse chronic pain profiles after total knee/hip arthroplasty.

Arch Orthop Trauma Surg

January 2025

Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, Braga, 4710-057, Portugal.

Introduction: Total joint arthroplasties generally achieve good outcomes, but chronic pain and disability are a significant burden after these interventions. Acknowledging relevant risk factors can inform preventive strategies. This study aimed to identify chronic pain profiles 6 months after arthroplasty using the ICD-11 (International Classification of Diseases) classification and to find pre and postsurgical predictors of these profiles.

View Article and Find Full Text PDF

Deep Neural Network Analysis of the 12-Lead Electrocardiogram Distinguishes Patients With Congenital Long QT Syndrome From Patients With Acquired QT Prolongation.

Mayo Clin Proc

January 2025

Division of Pediatric Cardiology, Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN; Department of Molecular Pharmacology and Experimental Therapeutics, Windland Smith Rice Sudden Death Genomics Laboratory, Mayo Clinic, Rochester, MN; Division of Heart Rhythm Services, Department of Cardiovascular Medicine, Windland Smith Rice Genetic Heart Rhythm Clinic, Mayo Clinic, Rochester, MN. Electronic address:

Objective: To test whether an artificial intelligence (AI) deep neural network (DNN)-derived analysis of the 12-lead electrocardiogram (ECG) can distinguish patients with long QT syndrome (LQTS) from those with acquired QT prolongation.

Methods: The study cohort included all patients with genetically confirmed LQTS evaluated in the Windland Smith Rice Genetic Heart Rhythm Clinic and controls from Mayo Clinic's ECG data vault comprising more than 2.5 million patients.

View Article and Find Full Text PDF

Objective: The objective of this study is to analyse the perspectives of screening candidates and healthcare professionals on shared decision-making (SDM) in prostate cancer (PCa) screening using the prostate-specific antigen (PSA) test.

Design: Descriptive qualitative study (May-December 2022): six face-to-face focus groups and four semistructured interviews were conducted, transcribed verbatim and thematically analysed using ATLAS.ti software.

View Article and Find Full Text PDF

The case report presents a male patient in his mid-60s with a history of hypertension, benign prostatic hyperplasia and chronic kidney disease (CKD). He presented with gradually increasing serum creatinine levels and hyperglobulinemia, leading to suspicion of multiple myeloma. However, subsequent testing revealed features consistent with systemic lupus erythematosus (SLE) and IgG4-related kidney disease (IgG4-RKD).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!