Graphene-PAMAM dendrimer-gold nanoparticle composite for electrochemical DNA hybridization detection.

Methods Mol Biol

Molecular Electronics Lab, Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi, India.

Published: March 2014

Graphene oxide is chemically functionalized using planar structured first generation polyamidoamine dendrimer (G1PAMAM) to form graphene core GG1PAMAM. The monolayer of GG1PAMAM is anchored on the 3-mercapto propionic acid monolayer pre-immobilized onto a gold transducer. The GG1PAMAM is decorated using gold nanoparticles for the covalent attachment of single-stranded DNA through simple gold-thiol chemistry. The single- and double-stranded DNAs are discriminated electrochemically in the presence of redox probe K3[Fe(CN)6]. Double-stranded-specific intercalator methylene blue is used to enhance the lower detection limit. The use of linear and planar G1PAMAM along with the graphene core has enhanced the detection limit 100 times higher than the G1PAMAM with the conventional ethylene core. This chapter presents the details of GG1PAMAM preparation and application to DNA sensing by electrochemical methods.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-62703-535-4_17DOI Listing

Publication Analysis

Top Keywords

graphene core
8
detection limit
8
graphene-pamam dendrimer-gold
4
dendrimer-gold nanoparticle
4
nanoparticle composite
4
composite electrochemical
4
electrochemical dna
4
dna hybridization
4
hybridization detection
4
detection graphene
4

Similar Publications

Regioisomeric π-Extended Nanographene with Long-lived Phosphorescence Afterglow.

Angew Chem Int Ed Engl

January 2025

NCL: CSIR National Chemical Laboratory, Organic Chemistry, Dr. Homi Bhabha Road, 411008, Pune, INDIA.

The cutouts of graphene sheets, particularly those with a nonplanar topology, present vast opportunities for advancement. Even a slight deviation from the planar structure can lead to intriguing (chiro)optical features for helically twisted nanographenes. In this context, we introduce two regioisomeric π-extended nanographenes that exhibit distinct excited-state characteristics.

View Article and Find Full Text PDF

Nanocomposites based on FeO and carbonaceous nanoparticles (CNPs), including carbon nanotubes (CNTs) and graphene derivatives (graphene oxide (GO) and reduced graphene oxide (RGO)), such as FeO@GO, FeO@RGO, and FeO@CNT, have demonstrated considerable potential in a number of health applications, including tissue regeneration and innovative cancer treatments such as hyperthermia (HT). This is due to their ability to transport drugs and generate localized heat under the influence of an alternating magnetic field on FeO. Despite the promising potential of CNTs and graphene derivatives as drug delivery systems, their use in biological applications is hindered by challenges related to dispersion in physiological media and particle agglomeration.

View Article and Find Full Text PDF

Flexible Passive Wireless Sensing Platform with Frequency Mapping and Multimodal Fusion.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of MEMS of the Ministry of Education, Southeast University, Nanjing 210096, China.

As one of the core parts of the Internet-of-things (IOTs), multimodal sensors have exhibited great advantages in fields such as human-machine interaction, electronic skin, and environmental monitoring. However, current multimodal sensors substantially introduce a bloated equipment architecture and a complicated decoupling mechanism. In this work we propose a multimodal fusion sensing platform based on a power-dependent piecewise linear decoupling mechanism, allowing four parameters to be perceived and decoded from the passive wireless single component, which greatly broadens the configurable freedom of a sensor in the IOT.

View Article and Find Full Text PDF

Tailoring Robust 2D Nanochannels by Radical Polymerization for Efficient Molecular Sieving.

Adv Sci (Weinh)

December 2024

Institute for Frontier Materials, Deakin University, Geelong, Victoria, 3220, Australia.

Two-dimensional (2D) nanochannels have demonstrated outstanding performance for sieving specific molecules or ions, owing to their uniform molecular channel sizes and interlayer physical/chemical properties. However, controllably tuning nanochannel spaces with specific sizes and simultaneously achieving high mechanical strength remain the main challenges. In this work, the inter-sheet gallery d-spacing of graphene oxide (GO) membrane is successfully tailored with high mechanical strength via a general radical-induced polymerization strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!