A synthetic redox probe structurally related to natural pyridoacridones was designed and electrochemically characterised. These heterocycles behave as DNA intercalators due to their extended planar structure that promotes stacking in between nucleic acid base pairs. Electrochemical characterization by cyclic voltammetry revealed a quasi-reversible electrochemical behaviour occurring at a mild negative potential in aqueous solution. The study of the mechanism showed that the iminoquinone redox moiety acts similarly to quinone involving a two-electron reduction coupled with proton transfer. The easily accessible potential region with respect to aqueous electro-inactive window makes the pyridoacridone ring suitable for the indirect electrochemical detection of chemically unlabelled DNA. Its usefulness as electrochemical hybridization indicator was assessed on immobilised DNA and compared to doxorubicin. The voltamperometric response of the intercalator acts as an indicator of the presence of double-stranded DNA at the electrode surface and allows the selective transduction of immobilised oligonucleotide hybridization at both macro- and microscale electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00216-013-7314-2DOI Listing

Publication Analysis

Top Keywords

electrochemical
5
dna
5
electrochemical transduction
4
transduction dna
4
dna hybridization
4
hybridization modified
4
modified electrodes
4
electrodes electroactive
4
electroactive pyridoacridone
4
pyridoacridone intercalator
4

Similar Publications

Article Synopsis
  • Glucose sensing is essential for managing diabetes, and this study explores NbCT-selenium nanoparticles for effective nonenzymatic glucose detection.
  • The composite material was characterized using techniques like scanning and transmission electron microscopy, and it was tested on a gold disc electrode in an alkaline solution.
  • The sensor operates at a low overpotential of 0.16 V, demonstrating a detection range of 2 to 30 mM, with a notable sensitivity of 4.15 µA mM cm and a detection limit of 1.1 mM.
View Article and Find Full Text PDF

Bloodstream bacterial infections, a major health concern due to rising sepsis rates, require prompt, cost-effective diagnostics. Conventional methods, like CO-based transduction, face challenges such as volatile metabolites, delayed gas-phase signaling, and the need for additional instruments, whereas electrochemical sensors provide rapid, sensitive, and efficient real-time detection. In this study, we developed a bioreceptor-free Prussian blue (PB) sensor platform for real-time bacterial growth monitoring in blood culture.

View Article and Find Full Text PDF

In this work, the electrochemical biosensor based on the subtle combination of terminal deoxynucleotidyl transferase (TdT), CRISPR/Cas14a, and magnetic nanoparticles (MNPs) was developed for the detection of nasopharyngeal carcinoma (NPC)-derived exosomes. Due to the synergistic effect of the following factors: the powerful elongation capacity of TdT for single-stranded DNA (ssDNA) with 3-hydroxy terminus, the outstanding trans-cleavage ability of CRISPR/Cas14a specifcally activated by the crRNA binding to target DNA, and the excellent separation ability of MNPs, the developed electrochemical biosensor exhibited high sensitivity for the detection of NPC-derived exosome, with a linear range from 6.0 × 10 ∼ 1.

View Article and Find Full Text PDF

Immobilization of 4-MBA & Cu on Au nanoparticles modified screen-printed electrode for glyphosate detection.

Talanta

January 2025

College of Agricultural Engineering, Shanxi Agricultural University, Taigu, 030801, China; Dryland Farm Machinery Key Technology and Equipment Key Laboratory of Shanxi Province, Taigu, 030801, China.

This study introduces an innovative electrochemical biosensor, engineered through the functionalization screen-printed electrode (SPE) with a coordination complex comprised of 4-mercaptobenzoic acid (4-MBA) and copper ions (Cu), achieving precise quantitative determination of glyphosate. Electrodepositing gold nanoparticles (AuNPs) onto the electrode surface, forming a self-assembled monolayer (SAM) of 4-MBA via thiol-gold interactions, and immobilizing Cu via coordination bonding with the monolayer, finalizing the electrochemical biosensor construction as Cu/4-MBA/AuNPs/SPE. The successful modification of the biosensor interface is confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and electrochemical characterization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!