A novel method was developed for the immobilization of Saccharomyces cerevisiae invertase within supermacroporous polyacrylamide cryogel and was used to produce invert sugar. First, the cross-linking of invertase with soluble polyglutaraldehyde (PGA) was carried out prior to immobilization in order to increase the bulkiness of invertase and thus preventing the leakage of the cross-linked enzyme after immobilization by entrapment. And then, in situ immobilization of PGA cross-linked invertase within cryogel synthesis was achieved by free radical polymerization in semi-frozen state. The method resulted in 100 % immobilization and 74 % activity yields. The immobilized invertase retained all the initial activity for 30 days and 30 batch reactions. Immobilization had no effect on optimum temperature and it was 60 °C for both free and immobilized enzyme. However, optimum pH was affected upon immobilization. Optimum pH values for free and immobilized enzyme were 4.5 and 5.0, respectively. The immobilized enzyme was more stable than the free enzyme at high pH and temperatures. The kinetic parameters for free and immobilized invertase were also determined. The newly developed method is simple yet effective and could be used for the immobilization of some other enzymes and microorganisms.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s12010-013-0507-5 | DOI Listing |
Bioresour Technol
January 2025
College of Urban Construction, Wuhan University of Science and Technology, Wuhan 430065, China.
Ammonia-oxidizing bacteria (AOB) sourced from an aerobic granular sludge (AGS) process were rapidly enriched by progressively increasing ammonia nitrogen (NH-N) loads, achieving a Nitrosomonas abundance of 20.7 % and a nitrite accumulation rate exceeding 80 %. Mycelial pellets formed by Cladosporium, isolated from the same AGS system, provided a porous surface structure for the immobilization of the enriched AOB, creating mycelial pellet/AOB composites.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, China. Electronic address:
The prevalence of nanoplastics in water has led to significant environmental and health concerns, yet effective and scalable strategies for mitigating this contamination remain limited. Here, we report a straightforward, efficient, and scalable approach to degrade nanoplastics in water using enzyme-loaded hydrogel granules with an interconnected porous structure and adjustable properties. These porous hydrogels were synthesized via a polymerization-induced phase separation method, allowing easy scaling-up.
View Article and Find Full Text PDFAppl Biochem Biotechnol
January 2025
Department of Food Engineering, State University of Maringá, Maringá, PR, Brazil.
Lipases have catalytic capacity in various processes such as hydrolysis. Those derived from plant sources, such as linseed, offer an economical alternative. The immobilization process facilitates the recovery and reuse of lipase, providing advantages such as resistance to high temperatures and difficulties in recovering and reusing free lipases, which makes product separation difficult.
View Article and Find Full Text PDFChemSusChem
January 2025
CIC biomaGUNE, Heterogeneous Biocatalysis, Paseo Miramon 182, 20009, San Sebastian, SPAIN.
EEfficient methods for isolating N-glycans are essential to understanding the functions and characteristics of the entire N-glycome. Enzymatic release using PNGaseF is the most effective approach for releasing mammalian N-glycans for analytical purposes. However, the use of PNGaseF for preparative N-glycan isolation is precluded due to the enzyme's cost and limited stability.
View Article and Find Full Text PDFSci Adv
January 2025
School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
Metal single atoms are of increasing importance in catalytic reactions. However, the mass diffusion is yet substantially limited by the confined surface of the support in comparison to homogeneous catalysis. Here, we demonstrate that cylindrical micellar brushes with highly solvated poly(2-vinylpyridine) coronas can immobilize 33 types of metal single atoms with 8.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!