Optical coherence tomography (OCT) may revolutionize fundamental investigation and clinical management of age-related macular degeneration and other eye diseases. However, quantitative OCT interpretation is hampered due to uncertain sub-cellular correlates of reflectivity in the retinal pigment epithelium (RPE) and photoreceptor. The purpose of this study was twofold: 1) to test OCT correlates in the RPE, and 2) to demonstrate the feasibility of longitudinal OCT monitoring of sub-cellular RPE dynamics. A high resolution OCT was constructed to achieve dynamic imaging of frog eyes, in which light-driven translocation of RPE melanosomes occurred within the RPE cell body and apical processes. Comparative histological examination of dark- and light-adapted eyes indicated that the RPE melanin granule, i.e., melanosome, was a primary OCT correlate. In vivo OCT imaging of RPE melanosomes opens the opportunity for quantitative assessment of RPE abnormalities associated with disease, and enables longitudinal investigation of RPE kinetics correlated with visual function.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3770963 | PMC |
http://dx.doi.org/10.1038/srep02644 | DOI Listing |
Graefes Arch Clin Exp Ophthalmol
January 2025
Department of Ophthalmology, University Hospital Munster, Munster, Germany.
Purpose: The retinal pigment epithelium (RPE) plays an important role in the pathogenesis of age-related macular degeneration (AMD) and other retinal degenerative diseases. The introduction of healthy RPE cell cultures into the subretinal space offers a potential treatment strategy. The aim of this study was the long-term culture and characterisation of RPE cells on nanofiber scaffolds.
View Article and Find Full Text PDFJ Microsc
January 2025
Faculty of Medicine Carl Gustav Carus, Experimental Center, Technische Universität Dresden, Dresden, Germany.
Ribosomes, discovered in 1955 by George Palade, were initially described as small cytoplasmic particles preferentially associated with the endoplasmic reticulum (ER). Over the years, extensive research has focused on both the structure and function of ribosomes. However, a fundamental question - how many ribosomes are present within whole cells - has remained largely unaddressed.
View Article and Find Full Text PDFJ Strength Cond Res
December 2024
School of Psychology, Faculty of Life and Health Sciences, Ulster University, Coleraine, Northern Ireland.
Edwards, AM, Coleman, D, Fuller, J, Kesisoglou, A, and Menting, SGP. Time perception and enjoyment of professional soccer players in different training sessions: Implications for assessment of session-RPE and training load. J Strength Cond Res 38(12): e754-e760, 2024-The purpose of this study was to investigate whether the perception of time and enjoyment levels among professional soccer players varied according to the type of training undertaken and whether this influenced the training load (TL) assessment method of session-rating of perceived exertion (sRPE).
View Article and Find Full Text PDFJ Strength Cond Res
September 2024
School of Psychology, Faculty of Life and Health Sciences, Ulster University, Coleraine, Northern Ireland.
Edwards, AM, Coleman, D, Fuller, J, Kesisoglou, A, and Menting, SGP. Time perception and enjoyment of professional soccer players in different training sessions: Implications for assessment of session-RPE and training load. J Strength Cond Res XX(X): 000-000, 2024-The purpose of this study was to investigate whether the perception of time and enjoyment levels among professional soccer players varied according to the type of training undertaken and whether this influenced the training load (TL) assessment method of session-rating of perceived exertion (sRPE).
View Article and Find Full Text PDFInt J Exerc Sci
December 2024
Longwood University, Farmville, Virginia, USA.
Unlabelled: To investigate the effects of differing treadmills on impact acceleration and muscle activation.
Methods: 15 males and 7 females (27.8 ± 7.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!