Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A rhodamine-based "turn-on" fluorescent probe 1 was synthesized with high yield. The recognizing behavior displays high selectivity of 1 toward Fe(2+) with a 2:1 complex, and 1 exhibits a stable response for Fe(2+) over a concentration range from 2 μM to 24 μM. Most importantly, probe is hardly interfered by other transition metal ions. Their fluorescent enhancement is observed in the presence of Fe(2+) because of the ring-open interactions of spirocyclic. All measurements are made in PBS buffer environments simulating biological conditions to make them suitable candidates for fluorescent labeling of biological systems. Confocal laser scanning microscopy experiments have proven that probe can be used to monitor Fe(2+) in living cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2013.08.092 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!