Although the protective effect of lipopolysaccharide (LPS) pretreatment on renal ischemia/reperfusion injury is known, a link to hypoxia-inducible factors (HIFs) has not been established. Here we show that LPS treatment led to HIF-2α accumulation in mouse kidneys and endothelial cells, a result of nuclear factor-κB activation. Inactivation of HIF-2α, rather than HIF-1α, completely negated LPS-mediated protection against renal ischemia/reperfusion injury. LPS-stimulated renoprotection was related to inducible/endothelial nitric oxide synthase (iNOS/eNOS) expression, increased production of nitric oxide, and enhanced postischemic microcirculatory recovery. All these effects were lost in HIF-2α knockout mice. Preischemic administration of a nitric oxide donor, rather than erythropoietin, restored the lost preconditioning effect of LPS in HIF-2α knockout mice. In vitro and in vivo studies demonstrated that HIF-2α in endothelial cells, rather than myeloid cells or hepatocytes, was responsible for the LPS-mediated effects. Thus, our results demonstrated that LPS preconditioning protected against renal ischemia/reperfusion injury by HIF-2α activation in endothelial cells that subsequently improved renal microvascular perfusion and reduced ischemic tubular damage.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/ki.2013.342 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!