Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Arsenoribosides (as glycerol; phosphate; sulfate and sulfonate) persisted in all bacteria-inoculated cultures irrespective of the source of bacteria (seawater, macro-algae surface) or the culture media used (DIFCO Marine Broth 2216 or novel blended Hormosira banksii tissue-based). This is unlike observations from traditional macro-algae tissue decomposition studies or in nature. In addition known arsenoriboside degradation products such as dimethylarsenoethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) and arsenate - As(V) were not detected in any cultures. Consequently, the use of bacterial culture incubation experiments to explain the fate of arsenoribosides in marine systems appears limited as the processes governing arsenoriboside degradation in these experiments appear to be different to those in macro-algae tissue decomposition studies or in nature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2013.08.029 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!