Impact of autologous dendritic cell-based immunotherapy (AGS-004) on B- and T-cell subset changes and immune activation in HIV-infected patients receiving antiretroviral therapy.

J Acquir Immune Defic Syndr

*Chronic Viral Illness Service and Research Institute, McGill University Health Centre, Montreal, Quebec, Canada; †Argos Therapeutics, Durham, NC; and ‡Division of Hematology, McGill University Health Centre, Montreal, Quebec, Canada.

Published: December 2013

We previously reported that a combination of antiretroviral therapy with 4 monthly injections of each patient's own autologous dendritic cells (AGS-004) electroporated with CD40 ligand and with HIV RNA antigens obtained from each patient's own pre-antiretroviral therapy plasma induced HIV-specific CD8 T-cell responses in 10 patients. To assess other AGS-004-induced immune changes, we evaluated the modifications in B- and T-cell subsets and the level of immune activation in these patients. The proportion of Bm1 naive cells was increased along with an augmentation of the proliferation marker Ki67. Memory B-cell frequency, CD4 and CD8 T-cell subsets, regulatory T-cell frequency, and CD38/HLA-DR/PD-1 T-cell activation levels remained unchanged after AGS-004 dendritic cell immunotherapy.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QAI.0b013e3182a4b9adDOI Listing

Publication Analysis

Top Keywords

autologous dendritic
8
immune activation
8
antiretroviral therapy
8
cd8 t-cell
8
t-cell subsets
8
t-cell
6
impact autologous
4
dendritic cell-based
4
cell-based immunotherapy
4
immunotherapy ags-004
4

Similar Publications

Hybrid lipid nanoparticles with tumor antigen-primed dendritic cell membranes for post-surgical tumor immunotherapy.

J Control Release

January 2025

College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul 08826, Republic of Korea. Electronic address:

Post-surgical tumor recurrence poses a major challenge in cancer treatment due to residual tumor cells and surgery-induced immunosuppression. Here, we developed hybrid nanoparticles, termed T-DCNPs, designed to promote antigen-specific activation of cytotoxic CD8+ T cells while concurrently inhibiting immunosuppressive pathways within the tumor microenvironment. T-DCNPs were formulated by co-extruding lipid nanoparticles containing a transforming growth factor β inhibitor with dendritic cells that were pre-treated with autologous neoantigens derived from surgically excised tumors.

View Article and Find Full Text PDF

Advancing brain immunotherapy through functional nanomaterials.

Drug Deliv Transl Res

January 2025

Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, 300044, Hsinchu, Taiwan.

Glioblastoma (GBM), a highly aggressive brain tumor, poses significant treatment challenges due to its highly immunosuppressive microenvironment and the brain immune privilege. Immunotherapy activating the immune system and T lymphocyte infiltration holds great promise against GBM. However, the brain's low immunogenicity and the difficulty of crossing the blood-brain barrier (BBB) hinder therapeutic efficacy.

View Article and Find Full Text PDF

Anaplastic lymphoma kinase (ALK)-fusion proteins resulting from chromosomal rearrangements are promising targets for cancer immunotherapy. While ALK-specific CD8+ T cells and epitopes presented on MHC class I have been identified in patients with ALK-positive malignancies, little is known about ALK-specific CD4+ T cells. We screened peripheral blood of ten ALK-positive anaplastic large cell lymphoma (ALK+ALCL) patients in remission and six healthy donors for CD4+ T-cell responses to the whole ALK-fusion protein, nucleophosmin (NPM1)::ALK.

View Article and Find Full Text PDF

Efficacy and safety of PD-1 blockade-activated neoantigen specific cellular therapy for advanced relapsed non-small cell lung cancer.

Cancer Immunol Immunother

January 2025

Department of Oncology, Lianyungang Clinical College of Nanjing Medical University/The First People's Hospital of Lianyungang, The Affiliated Lianyungang Hospital of Xuzhou Medical University, Lianyungang, 222002, China.

Background: Due to its strong immunogenicity and tumor specificity, neoplastic antigen has emerged as an immunotherapy target with wide therapeutic prospect and clinical application value. Anti-programmed death-1 (PD-1) antibodies reinvigorate T cell-mediated antitumor immunity. So, we conducted single-arm trial to assess the safety and efficacy of PD-1 blockade(Camrelizumab)-activated neoantigen specific cellular therapy (aNASCT) on advanced relapsed non-small lung cancer(NSCLC)(ClinicalTrials.

View Article and Find Full Text PDF

Dendritic cells (DCs) play a crucial role in initiating antitumor immune responses. However, in the tumor environment, dendritic cells often exhibit impaired antigen presentation and adopt an immunosuppressive phenotype, which hinders their function and reduces their ability to efficiently present antigens. Here, a dual catalytic oxide nanosponge (DON) doubling as a remotely boosted catalyst and an inducer of programming DCs to program immune therapy is reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!