An important issue faced by risk analysts is how to deal with uncertainties associated with accident scenarios. In industry, one often uses single values derived from historical data or literature to estimate events probability or their frequency. However, both dynamic environments of systems and the need to consider rare component failures may make unrealistic this kind of data. In this paper, uncertainty encountered in Layers Of Protection Analysis (LOPA) is considered in the framework of possibility theory. Data provided by reliability databases and/or experts judgments are represented by fuzzy quantities (possibilities). The fuzzy outcome frequency is calculated by extended multiplication using α-cuts method. The fuzzy outcome is compared to a scenario risk tolerance criteria and the required reduction is obtained by resolving a possibilistic decision-making problem under necessity constraint. In order to validate the proposed model, a case study concerning the protection layers of an operational heater is carried out.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2013.08.042 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Nanjing University, College of Engineering and Applied Sciences, No. 163 Xianlin Avenue, Qixia District, Nanjing, Nanjing, CHINA.
Electrolyte engineering has emerged as an effective strategy for stabilizing Zn-metal anodes. However, a single solute or solvent additive is far from sufficient to meet the requirements for electrolyte cycling stability. Here, we report a new-type high-entropy electrolyte composed of equal molar amounts of Zn(OTf)2 and LiOTf, along with equal volumes of H2O, triethyl phosphate, and dimethyl sulfoxide, which enhances electrolyte stability by increasing solvation entropy.
View Article and Find Full Text PDFCytotherapy
December 2024
School of Biological Sciences, University of Auckland, Auckland, New Zealand; Maurice Wilkins Centre, The University of Auckland, Auckland, New Zealand. Electronic address:
Background: One of the key functions of human skin is to provide a barrier, protecting the body from the surrounding environment and maintaining homeostasis of the internal environment. A mature, stratified epidermis is critical to achieve skin barrier function and is particularly important when producing skin grafts in vitro for wound treatment. For decades epidermal stratification has been achieved in vitro by culturing keratinocytes at an air-liquid interface, triggering proliferating basal keratinocytes to differentiate and form all epidermal layers.
View Article and Find Full Text PDFLangmuir
January 2025
College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China.
Metallic Zn is a promising anode for high-safety, low-cost, and large-scale energy storage systems. However, it is strongly hindered by unstable electrode/electrolyte interface issues, including zinc dendrite, corrosion, passivation, and hydrogen evolution reactions. In this work, an in situ interface protection strategy is established by turning the corrosion/passivation byproducts (zinc hydroxide sulfates, ZHSs) into a stable hybrid protection layer.
View Article and Find Full Text PDFDis Aquat Organ
January 2025
Department of Hydrobiology, Ichthyology and Biotechnology of Reproduction, West Pomeranian University of Technology in Szczecin, Kazimierza Królewicza 4, 71-550 Szczecin, Poland.
The 2022 Oder River disaster was one of the most significant harmful events in recent European river history, with an estimated 60% reduction in fish biomass in the lower section of the river. While the prevailing hypothesis attributes associated fish kills to toxins from golden algae Prymnesium parvum, our histopathological study on the gills of 2 common cyprinid fish species, namely vimba bream Vimba vimba (L.) and roach Rutilus rutilus (L.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Armament Engineering, College of Engineering, Ethiopian Defence University, Bishoftu, P.O. Box 1041, Ethiopia.
Advanced materials are crucial for enhancing soldier safety through improved personal body armor. In contrast to conventional Kevlar-epoxy composites, this study examines the ballistic performance of a unique ECO-UHMWPE (Ultra-High Molecular Weight Polyethylene) vest. The aim is to achieve a lightweight design with superior impact resistance, addressing limitations of the current armor used by the Ethiopian Defense Force.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!