Osteoprotegerin expression during the micro- and macrometastatic phases of the osteoblastic metastasis in prostate cancer: therapeutic implications.

Expert Opin Ther Targets

National and Kapodistrian University of Athens, Medical School, Department of Orthopaedic Surgery , 2 Nikis St, Kifisia 145 61, Athens , Greece.

Published: December 2013

Introduction: Osteoprotegerin (OPG) acts as a soluble decoy receptor for the bone marrow stroma cell-derived and osteoblast-derived receptor activator of nuclear factor-kB ligand (RANKL), thus regulating the RANK-mediated osteoclastogenesis and osteoclast-mediated bone resorption at the metastatic niche of cancer in skeleton.

Areas Covered: This article discusses the 'key' role of OPG expression during the early events of cancer cell invasion into the bone matrix and the subsequent events underlying the formation of osteoblastic metastasis, a unique event observed in human prostate cancer biology.

Expert Opinion: Understanding the cellular and molecular events implicated in bone metastasis can facilitate designing new therapeutic strategies for targeting early and/or late events in the metastasis processes. The RANKL/RANK/OPG pathway is a key regulator of pathological bone metabolism in metastatic sites. Targeted manipulation of these molecules may provide sustainable antitumor responses.

Download full-text PDF

Source
http://dx.doi.org/10.1517/14728222.2013.834889DOI Listing

Publication Analysis

Top Keywords

osteoblastic metastasis
8
prostate cancer
8
bone
5
osteoprotegerin expression
4
expression micro-
4
micro- macrometastatic
4
macrometastatic phases
4
phases osteoblastic
4
metastasis
4
metastasis prostate
4

Similar Publications

Bone marrow adipose tissue (BMAT) has garnered significant attention due to its critical roles in leukemia pathogenesis, cancer metastasis, and bone marrow failure. BMAT is a metabolically active, distinct tissue that differs from other fat depots. Marrow adipocytes, closely interacting with hematopoietic stem/progenitor cells and osteoblasts, play a pivotal role in regulating their functions.

View Article and Find Full Text PDF

Canine extraskeletal osteosarcomas are mesenchymal, osteoid producing tumors that can arise in soft tissues without initial involvement of the bones. An 8-year-old intact male Beagle dog presented with anorexia, abdominal pain, intermittent vomiting and melena. The patient had a history of recurrent ingestion of cotton based-toy fragments, but no prior surgical procedures involving the abdominal cavity.

View Article and Find Full Text PDF

In this study, we develop a comprehensive model to investigate the intricate relationship between the bone remodeling process, tumor growth, and bone diseases such as multiple myeloma. By analyzing different scenarios within the Basic Multicellular Unit, we uncover the dynamic interplay between remodeling and tumor progression. The model developed developed in the paper are based on the well accepted Komarova's and Ayati's models for the bone remodeling process, then these models were modified to include the effects of the tumor growth.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common primary malignant bone tumor in childhood. Patients who present with metastatic disease at diagnosis or relapse have a very poor prognosis, and this has not changed over the past four decades. The Wnt signaling pathway plays a role in regulating osteogenesis and is implicated in OS pathogenesis.

View Article and Find Full Text PDF

Osteosarcoma (OS) is the most common malignant bone tumor, characterized by a high propensity for metastasis. Recent studies have highlighted the role of alternative splicing in cancer metastasis, although the precise mechanisms underlying aberrant splicing in OS invasion and metastasis remain unclear. Here, we analyzed consistently differentially expressed genes and differentially alternative splicing events between primary and metastatic OS to identify potential genes associated with OS progression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!