A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity. | LitMetric

Design strategies for P-containing fuels adaptable CeO2-MoO3 catalysts for DeNO(x): significance of phosphorus resistance and N2 selectivity.

Environ Sci Technol

State Key Joint Laboratory of Environment Simulation and Pollution Control (SKLESPC), School of Environment, Tsinghua University, Beijing, 100084, China.

Published: October 2013

Phosphorus compounds from flue gas have a significant deactivation effect on selective catalytic reduction (SCR) DeNOx catalysts. In this work, the effects of phosphorus over three catalysts (CeO2, CeO2-MoO3, and V2O5-MoO3/TiO2) for NH3-SCR were studied, and characterizations were performed aiming at a better understanding of the behavior and poisoning mechanism of phosphorus over SCR catalysts. The CeO2-MoO3 catalyst showed much better catalytic behavior with respect to resistance to phosphorus and N2 selectivity compared with V2O5-MoO3/TiO2 catalyst. With addition of 1.3 wt % P, the SCR activity of V2O5-MoO3/TiO2 decreased dramatically at low temperature due to the impairment of redox property for NO oxidation; meanwhile, the activity over CeO2 and CeO2-MoO3 catalysts was improved. The superior NO oxidation activity contributes to the activity over P-poisoned CeO2 catalyst. The increased surface area and abundant acidity sites contribute to excellent activity over CeO2-MoO3 catalyst. As the content of P increased to 3.9 wt %, the redox cycle over CeO2 catalyst (2CeO2 ↔ Ce2O3 + O*) was destroyed as phosphate accumulated, leading to the decline of SCR activity; whereas, more than 80% NOx conversion and superior N2 selectivity were obtained over CeO2-MoO3 at T > 300 °C. The effect of phosphorus was correlated with the redox properties of SCR catalyst for NH3 and NO oxidation. A spillover effect that phosphate transfers from Ce to Mo in calcination was proposed.

Download full-text PDF

Source
http://dx.doi.org/10.1021/es4022014DOI Listing

Publication Analysis

Top Keywords

ceo2-moo3 catalysts
8
ceo2 ceo2-moo3
8
ceo2-moo3 catalyst
8
scr activity
8
oxidation activity
8
ceo2 catalyst
8
ceo2-moo3
6
phosphorus
6
catalyst
6
activity
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!