Friedreich ataxia patient tissues exhibit increased 5-hydroxymethylcytosine modification and decreased CTCF binding at the FXN locus.

PLoS One

Ataxia Research Group, Division of Biosciences, School of Health Sciences and Social Care, Brunel University, Uxbridge, Middlesex, United Kingdom.

Published: April 2014

Background: Friedreich ataxia (FRDA) is caused by a homozygous GAA repeat expansion mutation within intron 1 of the FXN gene, which induces epigenetic changes and FXN gene silencing. Bisulfite sequencing studies have identified 5-methylcytosine (5 mC) DNA methylation as one of the epigenetic changes that may be involved in this process. However, analysis of samples by bisulfite sequencing is a time-consuming procedure. In addition, it has recently been shown that 5-hydroxymethylcytosine (5 hmC) is also present in mammalian DNA, and bisulfite sequencing cannot distinguish between 5 hmC and 5 mC.

Methodology/principal Findings: We have developed specific MethylScreen restriction enzyme digestion and qPCR-based protocols to more rapidly quantify DNA methylation at four CpG sites in the FXN upstream GAA region. Increased DNA methylation was confirmed at all four CpG sites in both FRDA cerebellum and heart tissues. We have also analysed the DNA methylation status in FRDA cerebellum and heart tissues using an approach that enables distinction between 5 hmC and 5 mC. Our analysis reveals that the majority of DNA methylation in both FRDA and unaffected tissues actually comprises 5 hmC rather than 5 mC. We have also identified decreased occupancy of the chromatin insulator protein CTCF (CCCTC-binding factor) at the FXN 5' UTR region in the same FRDA cerebellum tissues.

Conclusions/significance: Increased DNA methylation at the FXN upstream GAA region, primarily 5 hmC rather than 5 mC, and decreased CTCF occupancy at the FXN 5' UTR are associated with FRDA disease-relevant human tissues. The role of such molecular mechanisms in FRDA pathogenesis has now to be determined.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762780PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074956PLOS

Publication Analysis

Top Keywords

dna methylation
24
bisulfite sequencing
12
frda cerebellum
12
friedreich ataxia
8
decreased ctcf
8
fxn gene
8
epigenetic changes
8
cpg sites
8
fxn upstream
8
upstream gaa
8

Similar Publications

Introduction: The interferon regulatory factor 7 (IRF7), a member of the IRF family of transcription factors, plays a major role in the regulation of numerous aspects of an immune response and has increasingly been surveyed to determine the aetiology and pathogenesis of systemic sclerosis (SSc). Objective: This study aimed to investigate the transcriptional levels of IRF7 mRNA in peripheral blood mononuclear cells (PBMCs) and the impact of promoter methylation on IRF7 mRNA expression in SSc patients compared to healthy controls.

Methods: PBMCs were obtained from confirmed 40 naïve SSc cases and 20 healthy controls for IRF-7 expression and methylation analysis.

View Article and Find Full Text PDF

Blood-based DNA methylation markers for lung cancer prediction.

BMJ Oncol

May 2024

Genomic Epidemiology Branch, International Agency for Research on Cancer, Lyon, France.

Objective: Screening high-risk individuals with low-dose CT reduces mortality from lung cancer, but many lung cancers occur in individuals who are not eligible for screening. Risk biomarkers may be useful to refine risk models and improve screening eligibility criteria. We evaluated if blood-based DNA methylation markers can improve a traditional lung cancer prediction model.

View Article and Find Full Text PDF

Background: Normal brain aging is associated with dopamine decline, which has been linked to age-related cognitive decline. Factors underlying individual differences in dopamine integrity at older ages remain, however, unclear. Here we aimed at investigating: (i) whether inflammation is associated with levels and 5-year changes of in vivo dopamine D2-receptor (DRD2) availability, (ii) if DRD2-inflammation associations differ between men and women, and (iii) whether inflammation and cerebral small-vessel disease (white-matter lesions) serve as two independent predictors of DRD2 availability.

View Article and Find Full Text PDF

Assessment of relationships between epigenetic age acceleration and multiple sclerosis: a bidirectional mendelian randomization study.

Epigenetics Chromatin

January 2025

Department of Neurology, Tongji Shanxi Hospital, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Third Hospital of Shanxi Medical University, Taiyuan, China.

Background: The DNA methylation-based epigenetic clocks are increasingly recognized for their precision in predicting aging and its health implications. Although prior research has identified connections between accelerated epigenetic aging and multiple sclerosis, the chronological and causative aspects of these relationships are yet to be elucidated. Our research seeks to clarify these potential causal links through a bidirectional Mendelian randomization study.

View Article and Find Full Text PDF

Postpartum depression (PPD) affects ~10-15% of childbearing individuals, with deleterious consequences for two generations. Recent research has explored the biological mechanisms of PPD, particularly neuroactive steroids (NAS). We sought here to investigate associations between NAS levels and ratios during pregnancy and the subsequent development of depressive symptoms with postpartum onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!