MutS homologue hMSH5: recombinational DSB repair and non-synonymous polymorphic variants.

PLoS One

School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, United States of America.

Published: April 2014

Double-strand breaks (DSBs) constitute the most deleterious form of DNA lesions that can lead to genome alterations and cell death, and the vast majority of DSBs arise pathologically in response to DNA damaging agents such as ionizing radiation (IR) and chemotherapeutic agents. Recent studies have implicated a role for the human MutS homologue hMSH5 in homologous recombination (HR)-mediated DSB repair and the DNA damage response. In the present study, we show that hMSH5 promotes HR-based DSB repair, and this property resides in the carboxyl-terminal portion of the protein. Our results demonstrate that DSB-triggered hMSH5 chromatin association peaks at the proximal regions of the DSB and decreases gradually with increased distance from the break. Furthermore, the DSB-triggered hMSH5 chromatin association is preceded by and relies on the assembly of hMRE11 and hRad51 at the proximal regions of the DSB. Lastly, the potential effects of hMSH5 non-synonymous variants (L85F, Y202C, V206F, R351G, L377F, and P786S) on HR and cell survival in response to DSB-inducing anticancer agents have been analyzed. These experiments show that the expression of hMSH5 variants elicits different survival responses to anticancer drugs cisplatin, bleomycin, doxorubicin and camptothecin. However, the effects of hMSH5 variants on survival responses to DSB-inducing agents are not directly correlated to their effects exerted on HR-mediated DSB repair, suggesting that the roles of hMSH5 variants in the processes of DNA damage response and repair are multifaceted.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762724PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073284PLOS

Publication Analysis

Top Keywords

dsb repair
16
hmsh5 variants
12
hmsh5
9
muts homologue
8
homologue hmsh5
8
hr-mediated dsb
8
dna damage
8
damage response
8
dsb-triggered hmsh5
8
hmsh5 chromatin
8

Similar Publications

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

Structural variations (SVs) play important roles in genetic diversity, evolution, and carcinogenesis and are, as such, important for human health. However, it remains unclear how spatial proximity of double-strand breaks (DSBs) affects the formation of SVs. To investigate if spatial proximity between two DSBs affects DNA repair, we used data from 3C experiments (Hi-C, ChIA-PET, and ChIP-seq) to identify highly interacting loci on six different chromosomes.

View Article and Find Full Text PDF

Functional conservation and divergence of arabidopsis VENOSA4 and human SAMHD1 in DNA repair.

Heliyon

January 2025

Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.

The human deoxyribonucleoside triphosphatase (dNTPase) Sterile alpha motif and histidine-aspartate domain containing protein 1 (SAMHD1) has a dNTPase-independent role in repairing DNA double-strand breaks (DSBs) by homologous recombination (HR). Here, we show that VENOSA4 (VEN4), the probable ortholog of SAMHD1, also functions in DSB repair by HR. The loss-of-function mutants showed increased DNA ploidy and deregulated DNA repair genes, suggesting DNA damage accumulation.

View Article and Find Full Text PDF

Nuclear translocation of RON receptor tyrosine kinase. New mechanistic and functional insights.

Cytokine Growth Factor Rev

January 2025

Center for Precision Medicine, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Pathology, College of Medicine, China Medical University, Taichung, Taiwan. Electronic address:

Receptor tyrosine kinases (RTKs) are membrane sensors that monitor alterations in the extracellular milieu and translate this information into appropriate cellular responses. Epidermal growth factor receptor (EGFR) is the most well-known model in which gene expression is upregulated by mitogenic signals through the activation of multiple signaling cascades or by nuclear translocation of the full-length EGFR protein. RON (Receptuer d'Origine Nantatise, also known as macrophage stimulating 1 receptor, MST1R) has recently gained attention as a therapeutic target for human cancer.

View Article and Find Full Text PDF

Bloom Syndrome helicase (Blm) is a RecQ family helicase involved in DNA repair, cell-cycle progression, and development. Pathogenic variants in human BLM cause the autosomal recessive disorder Bloom Syndrome, characterized by predisposition to numerous types of cancer. Prior studies of Drosophila Blm mutants lacking helicase activity or protein have shown sensitivity to DNA damaging agents, defects in repairing DNA double-strand breaks (DSBs), female sterility, and improper segregation of chromosomes in meiosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!