Role of diatoms in the spatial-temporal distribution of intracellular nitrate in intertidal sediment.

PLoS One

Max Planck Institute for Marine Microbiology, Microsensor Group, Bremen, Germany ; University of Southern Denmark, Institute of Biology, NordCEE, Odense, Denmark.

Published: April 2014

Intracellular nitrate storage allows microorganisms to survive fluctuating nutrient availability and anoxic conditions in aquatic ecosystems. Here we show that diatoms, ubiquitous and highly abundant microalgae, represent major cellular reservoirs of nitrate in an intertidal flat of the German Wadden Sea and are potentially involved in anaerobic nitrate respiration. Intracellular nitrate (ICNO3) was present year-round in the sediment and was spatially and temporally correlated with fucoxanthin, the marker photopigment of diatoms. Pyrosequencing of SSU rRNA genes of all domains of life confirmed that ICNO3 storage was most likely due to diatoms rather than other known nitrate-storing microorganisms (i.e., large sulfur bacteria and the eukaryotic foraminifers and gromiids). Sedimentary ICNO3 concentrations reached up to 22.3 µmol dm(-3) at the sediment surface and decreased with sediment depth to negligible concentrations below 5 cm. Similarly, the ICNO3/fucoxanthin ratio and porewater nitrate (PWNO3) concentrations decreased with sediment depth, suggesting that ICNO3 of diatoms is in equilibrium with PWNO3, but is enriched relative to PWNO3 by 2-3 orders of magnitude. Cell-volume-specific ICNO3 concentrations in a diatom mat covering the sediment surface during spring were estimated at 9.3-46.7 mmol L(-1). Retrieval of 18S rRNA gene sequences related to known nitrate-storing and nitrate-ammonifying diatom species suggested that diatoms in dark and anoxic sediment layers might be involved in anaerobic nitrate respiration. Due to the widespread dominance of diatoms in microphytobenthos, the total nitrate pool in coastal marine sediments may generally be at least two times larger than derived from porewater measurements and partially be recycled to ammonium.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3762809PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073257PLOS

Publication Analysis

Top Keywords

intracellular nitrate
12
nitrate
8
nitrate intertidal
8
involved anaerobic
8
anaerobic nitrate
8
nitrate respiration
8
icno3 concentrations
8
sediment surface
8
decreased sediment
8
sediment depth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!