Nucleosome positioning plays an essential role in cellular processes by modulating accessibility of DNA to proteins. Many computational models have been developed to predict genome-wide nucleosome positions from DNA sequences. Comparative analysis of predicted and experimental nucleosome positioning maps facilitates understanding the regulatory mechanisms of transcription and DNA replication. Therefore, a comprehensive evaluation of existing computational methods is important and useful for biologists to choose appropriate ones in their research. In this article, we carried out a performance comparison among eight widely used computational methods on four species including yeast, fruitfly, mouse and human. In particular, we compared these methods on different regions of each species such as gene sequences, promoters and 5'UTR exons. The experimental results show that the performances of the two latest versions of the thermodynamic model are relatively steadier than the other four methods. Moreover, these methods are workable on four species, but their performances decrease gradually from yeast to human, indicating that the fundamental mechanism of nucleosome positioning is conserved through the evolution process, but more and more factors participate in the determination of nucleosome positions, which leads to sophisticated regulation mechanisms.

Download full-text PDF

Source
http://dx.doi.org/10.1093/bib/bbt062DOI Listing

Publication Analysis

Top Keywords

nucleosome positioning
16
nucleosome positions
8
computational methods
8
methods
6
nucleosome
6
comparative evaluation
4
evaluation prediction
4
prediction methods
4
methods nucleosome
4
positioning
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!