The protection against colorectal cancer (CRC) by non-steroidal anti-inflammatory drugs (NSAIDs) is in part dependent on inhibition of cyclooxygenase (COX). We compared the efficacy of the non-COX-inhibiting R-flurbiprofen (R-FB) with COX-inhibiting sulindac and racemic flurbiprofen (Rac-FB), and determined their effects on apoptosis, in an azoxymethane (AOM)-induced rat CRC model. In experiment 1, groups of rats were given a daily drug gavage (R-FB 30 mg/kg, Rac-FB 10 mg/kg and Sulindac 20 mg/kg) for one week, followed by AOM treatment and were sacrificed eight hours later, colons were examined for apoptosis and cell proliferation. In experiment 2, groups of rats were given two AOM treatments, followed by a daily drug gavage until they were sacrificed ten weeks later, and colons were examined for aberrant crypt foci (ACF) and prostaglandin E2 production. All drugs significantly enhanced apoptosis and inhibited ACF, irrespective of their COX-inhibiting potency (p<0.01), but sulindac was more potent in inhibition of large ACF, p<0.05. COX-inhibiting sulindac achieved the greatest protective effect. The greater safety profile of Rac-FB should provide an advantage for chemoprevention.

Download full-text PDF

Source

Publication Analysis

Top Keywords

aberrant crypt
8
crypt foci
8
colorectal cancer
8
experiment groups
8
groups rats
8
daily drug
8
drug gavage
8
colons examined
8
comparing effects
4
effects cox
4

Similar Publications

A high-fat diet could lead to obesity, increasing colorectal cancer risk due to dyslipidemia and chronic inflammation, while Piper betle (PB) exhibits anti-tumor, anti-inflammation, and anti-oxidant benefits. This study aimed to determine whether PB possesses chemopreventive effects on high-fat diet (HFD)-induced and azoxymethane (AOM)-induced colon cancer. Male Sprague-Dawley rats receiving either a normal diet or HFD were divided into control, PB, AOM, and AOM+PB subgroups which were then sacrificed after 24 weeks.

View Article and Find Full Text PDF

Background: Colorectal cancer (CRC) is a major public health concern. Animal models play a crucial role in understanding the disease pathology and development of effective treatment strategies. Chemically induced CRC represents a cornerstone in animal model development; however, due to the presence of different animal species with different genetic backgrounds, it becomes mandatory to study the susceptibility of different mice species to CRC induction by different chemical entities such as 1,2-dimethylhydrazine (DMH).

View Article and Find Full Text PDF

The present investigation explores into the influence of dietary nutrients, particularly alpha-linolenic acid (ALA), a plant-derived omega-3 fatty acid abundant in perilla seed oil (PSO), on the development of colitis-associated colorectal cancer (CRC). The study employs a mouse model to scrutinize the effects of ALA-rich PSO in the context of inflammation-driven CRC. Perilla seeds were subjected to oil extraction, and the nutritional composition of the obtained oil was analysed.

View Article and Find Full Text PDF

[Corrigendum] Anti‑carcinogenic properties of omeprazole against human colon cancer cells and azoxymethane‑induced colonic aberrant crypt foci formation in rats.

Int J Oncol

January 2025

Center for Chemoprevention and Cancer Drug Development, Department of Medicine, Hem-Onc Section, PC Stephenson Oklahoma Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA.

Following the publication of the above article, an interested reader drew to the authors' attention that certain of the in vitro image panels shown in Fig. 3B (featuring the effects of adding five different concentrations of omeprazole on acridine orange/ethidium bromide‑stained HCA‑7 cells) and Fig. 4 (showing western blotting experiments) on p.

View Article and Find Full Text PDF

Brazilian propolis produced by honeybees have been widely studied, but few data exist regarding the safety and pharmacological potential of this natural product. The aim of the present study was to examine the toxicity, genotoxicity, and chemoprevention effects attributed to exposure to the brown propolis hydroalcoholic extract (BPHE) of . Acute oral toxicity test was conducted using Wistar Hannover rats, demonstrating that the highest dose tested (2,000 mg/kg b.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!