Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The composition of cell-surface proteins changes during lineage specification, altering cellular responses to their milieu. The changes that characterize maturation of early neural stem cells (NSCs) remain poorly understood. Here we use mass spectrometry-based cell surface capture technology to profile the cell surface of early NSCs and demonstrate functional requirements for several enriched molecules. Primitive NSCs arise from embryonic stem cells upon removal of Transforming growth factor-β signaling, while definitive NSCs arise from primitive NSCs upon Lif removal and FGF addition. In vivo aggregation assays revealed that N-cadherin upregulation is sufficient for the initial exclusion of definitive NSCs from pluripotent ectoderm, while c-kit signaling limits progeny of primitive NSCs. Furthermore, we implicate EphA4 in primitive NSC survival signaling and Erbb2 as being required for NSC proliferation. This work elucidates several key mediators of NSC function whose relevance is confirmed on forebrain-derived populations and identifies a host of other candidates that may regulate NSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/stem.1550 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!