In the present paper, a new type of Lewis acid-base complex BX3...Li@Calix[4]pyrrole (X = H and F) was designed and assembled based on electride molecule Li@calix[4]pyrrole (as a Lewis base) and the electron deficient molecule BX3 (as a Lewis acid) by employing quantum mechanical calculation. The new Lewis acid-base complex offers an interesting push-excess electron-pull (P-e-P) framework to enhance the stability and nonlinear optical (NLO) response. To measure the nonlinear optical response, static first hyperpolarizabilities (β 0) are exhibited. Significantly, point-face assembled Lewis acid-base complex BF3...Li@Calix[4]pyrrole (II) has considerable first hyperpolarizabilities (β 0) value (1.4 × 106 a.u.), which is about 117 times larger than reported 11,721 a.u. of electride Li@Calix[4]pyrrole. Further investigations show that, in BX3...Li@Calix[4]pyrrole with P-e-P framework, a strong charge-transfer transition from the ground state to the excited state contributes to the enhancement of first hyperpolarizability. Theory calculation of enthalpies of reaction (ΔrH0) at 298 K demonstrates that it is feasible to synthetize the complexes BX3...Li@Calix[4]pyrrole. In addition, compared with Li@Calix[4]pyrrole, the vertical ionization potential (VIP) and HOMO-LUMO gap of BX3...Li@Calix[4]pyrrole have obviously increased, due to the introduction of the Lewis acid molecule BX3. The novel Lewis acid-base NLO complex possesses not only a large nonlinear optical response but also higher stability.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00894-013-1982-x | DOI Listing |
J Am Chem Soc
January 2025
Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, 123 Bevier Road, Piscataway, New Jersey 08854, United States.
Electrostatic interactions, hydrogen bonding, and solvation effects can alter the free energies of ionizable functional groups in proteins and other nanoporous architectures, allowing such structures to tune acid-base chemistry to support specific functions. Herein, we expand on this theme to examine how metal sites ( = H, Zn, Co, Co) affect the p of benzoic acid guests bound in discrete porphyrin nanoprisms () in CDCN. These host-guest systems were chosen to model how porous metalloporphyrin electrocatalysts might influence H transfer processes that are needed to support important electrochemical reactions (e.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
School of Chemical Engineering, The University of Adelaide, North Terrace, Adelaide, SA 5005, Australia. Electronic address:
Photocatalytic oxygen evolution reaction (OER) is pivotal for sustainable energy systems yet lacks high-performance catalysts capable of strong visible light absorption, robust charge dynamics, fast reaction kinetics, and high oxidation capability. Herein, we report the multiscale optimization of carbon nitride through the construction of porous curled carbon nitride nanosheets (CNA-B30) incorporating boron center/cyano group Lewis acid-base pairs (LABPs). The unique chemical and structural features of CNA-B30 extended the photoabsorption edges of π → π* and n → π* electronic transitions to 470 nm and 715 nm, respectively.
View Article and Find Full Text PDFSmall
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.
View Article and Find Full Text PDFSmall
December 2024
International Joint Research Center for Photoresponsive Molecules and Materials, School of Chemical and Material Engineering, Jiangnan University, Lihu Street 1800, Wuxi, 214122, China.
Electrocatalytic hydrogenation of toxic nitrobenzene to value-added aniline is of great significance in addressing the issues of energy crisis and environmental pollution. However, it is a considerable challenging and crucial to develop highly efficient and earth-abundant transition metal-based electrocatalysts with superior durability for the electro-hydrogenation of nitrobenzene due to the competitive hydrogen evolution reaction (HER). In this work, a facile approach is designed and introduced to constructing an integrated self-supported heterostructured Co Ni(OH)(CO)/Al(OH) nanoarrays (CoNiCH/Al(OH)) for the electrocatalytic reduction of nitrobenzoic acid (PNBA) to p-aminobenzoic acid (PABA) and its electrocatalytic mechanism for PNBA reduction is investigated.
View Article and Find Full Text PDFJ Am Chem Soc
December 2024
State Key Laboratory of Fluorine & Nitrogen Chemicals, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China.
Solid frustrated Lewis pair (FLP) shows remarkable advantages in the activation of small molecules such as CO, owing to the strong orbital interactions between FLP sites and reactant molecules. However, most of the currently constructed FLP sites are randomly distributed and easily reunited on the surface of catalysts, resulting in a low utilization rate of FLP sites. Herein, atomic tungsten-based FLP (N···W FLP) sites are constructed for photocatalytic CO conversion through introducing W single-atoms into polymeric carbon nitride.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!