Background: TH2-biased immune responses are important in allergy pathogenesis. Mechanisms of allergen-specific immunotherapy (SIT) might include the induction of regulatory T cells (Tregs) and immunoglobulin (Ig) G4 blocking antibodies, a reduction in the number of effector cells, and skewing of the cytokine profile towards a TH1-polarized immune response. We investigated the effects of SIT on T cells, on immunomodulation of human leukocyte antigen (HLA)-G, which has been associated with allergy, on regulatory cytokine expression, and on serum allergen-specific antibody subclasses (IgE and IgG4).

Methods: Eleven birch and/or grass pollen-allergic patients and 10 healthy nonatopic controls were studied before and during SIT. Tregs, chemokine receptors, soluble HLA-G (sHLA-G), Ig-like transcript (ILT) 2, specific IgE, and IgG4 were studied. Peripheral blood mononuclear cells (PBMCs) were stimulated with pollen extract in vitro and immune factors were evaluated.

Results: During SIT, the main changes in the peripheral blood were an increase in CXCR3(+)CD4(+)CD25(+)CD127(low/-) Tregs and a decrease in CCR4(+)CD4(+)CD25(+)CD127(low/-) Tregs, an increase in allergen-specific IgG4, and a decrease in sHLA-G during the first half of the treatment period. In the PBMC in vitro experiments, the following changes were observed upon allergen-stimulation: an increase in CD4(+)CD25(+)CD127(low/-) Tregs and ILT2(+)CD4(+)CD25(+)CD127(low/-) Tregs, an increase in IL-10 and IL-2 levels, and an increase in sHLA-G that was most pronounced at the start of SIT.

Conclusions: The changes in CXCR3(+)CD4(+)CD25(+)CD127(low/-) Treg, IgG4, and sHLA-G levels in the peripheral blood and in ILT2(+) Treg, IL-10, IL-2, and sHLA-G levels upon in vitro allergen stimulation suggest an upregulation in immunomodulatory factors and, to some degree, a shift towards TH1 during SIT.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000353281DOI Listing

Publication Analysis

Top Keywords

peripheral blood
12
human leukocyte
8
regulatory cells
8
tregs increase
8
il-10 il-2
8
shla-g levels
8
tregs
6
cells
5
sit
5
shla-g
5

Similar Publications

No biomarker can effectively screen for early gastric cancer (EGC). Players in the A disintegrin and metalloproteinase (ADAM)-natural killer group 2 member D (NKG2D) receptor axis may have a role for that. As a proof-of-concept pilot study, the expression of ADAM8, ADAM9, ADAM10, ADAM12, ADAM17, and major histocompatibility complex (MHC) class I chain-related sequence A (MICA), a ligand for NKG2D, in gastric cancer was investigated in silico using The Cancer Genome Atlas (TCGA) database.

View Article and Find Full Text PDF

ITK-SYK and TEL-SYK (also known as ETV6-SYK) are human tumor-causing chimeric proteins containing the kinase region of SYK, and the membrane-targeting, N-terminal, PH-TH domain-doublet of ITK or the dimerizing SAM-PNT domain of TEL, respectively. ITK-SYK causes peripheral T cell lymphoma, while TEL-SYK was reported in myelodysplastic syndrome. BTK is a kinase highly related to ITK and to further delineate the role of the N-terminus, we generated the corresponding fusion-kinase BTK-SYK.

View Article and Find Full Text PDF

Carcinoma of unknown primary (CUP) comprises 2-5% of cancer diagnoses worldwide, with a prevalence that has modestly declined with increased availability of advanced diagnostic tools such as next-generation sequencing (NGS). This case presentation illustrates the possibilities and gaps that remain with improving diagnostic capabilities in identifying and effectively treating CUP. This is the case of a rapidly enlarging right axillary mass without a primary tumour site and histological evaluation demonstrating a poorly differentiated neoplasm.

View Article and Find Full Text PDF

A human induced pluripotent stem cell (iPSC) line was generated from patient with Kennedy Disease (KD), who carried the CAG repeat expansion mutation in AR gene. Peripheral blood mononuclear cells (PBMCs) were reprogrammed using non-integrating delivery of KFL4, OCT4, SOX2, BCL-XL and c-MYC. The iPSC line expresses pluripotency markers, displays a normal karyotype, and is capable of differentiate into three germ layers in vitro.

View Article and Find Full Text PDF

Generation of the human iPSC line ESi132-A from a patient with retinitis pigmentosa caused by a mutation in the PRPF31 gene.

Stem Cell Res

December 2024

Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, Universidad de Sevilla, Universidad Pablo de Olavide, Avda. Américo Vespucio 24, 41092 Seville, Spain.

Mutations in the PRPF31 gene are a well-known cause of autosomal dominant retinitis pigmentosa (RP), the most prevalent genetic form of blindness in adults, affecting 1 in 4,000 individuals globally. In this study, peripheral blood mononuclear cells from a patient carrying a heterozygous mutation in PRPF31 were reprogrammed to generate the human iPSC line ESi132-A. This cell line was thoroughly characterized for self-renewal and pluripotency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!