Purpose: The assessment of the clinical significance of chondroitin sulfate in patients with type 2 diabetes mellitus (T2DM) and diabetic nephropathy (DN) for the detection of the relationship between chondroitin sulfate (CS) structure and disease.
Methods: Healthy control (n=15), type 2 diabetic patients with normalbuminuria (n=12), and patients with microalbuminuria (n=13) were enrolled in the study. Total sulfated glycosaminoglycans (GAGs) concentration in the first morning urine was evaluated by 1,9-dimethylmethylene blue method and the composition was determined by agarose gel electrophoresis. Urinary chondroitin sulfate was quantified by a combination of treatment with specific lyase digestions and separation of products by SAX-HPLC.
Results: GAGs concentration significantly increased in diabetic patients with microalbuminuria compared to diabetic patients with normalbuminuria. Qualitative analysis of urinary GAGs revealed the presence of chondroitin sulfate, heparan sulfate, and low-sulphated chondroitin sulphate-protein complex (LSC-PG). There was a decrease in CS and an increase in LSC-PG in the urine of patients with diabetes compared to healthy controls. Moreover, in diabetic patients, chondroitin sulfate contains more 6-sulfated disaccharide and less 4-sulfated disaccharide. There was a statistically significant difference in ratio of 6-sulfated disaccharide to 4-sulfated disaccharide among the three groups.
Conclusions: GAGs were significantly increased in diabetic patients with microalbuminuria. The levels of urinary GAGs, ratio of LSC-PG/CS, as well as ratio of 6-sulfated to 4-sulfated disaccharides could be useful markers for diagnosis of patients with diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.18433/j3gs3c | DOI Listing |
ACS Appl Bio Mater
January 2025
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
This study examines the relationship between chondroitin sulfate, proteinoids, and computational neuron models, with a specific emphasis on the Izhikevich neuron model. We investigate the effect of chondroitin sulfate-proteinoid complexes on the behavior and dynamics of simulated neurons. Through the use of computational simulations, we provide evidence that these biomolecular components have the power to regulate the responsiveness of neurons, the patterns of their firing, and the ability of their synapses to change within the Izhikevich architecture.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
College of Food Science and Engineering, Ocean University of China, Qingdao, 266404, PR China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, 168 Wenhai Middle Road, Qingdao, 266237, China.
Hyaluronic acid (HA), a vital polysaccharide naturally present in human tissues, is widely utilized in the food, pharmaceutical and cosmetic industries due to its diverse functionalities and bioactivity. Rapid and accurate quantification of HA is essential for the quality control of its products. Enzymatic quantification methods, known for their simplicity and high specificity, were employed for polysaccharide measurement.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China; School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, China. Electronic address:
Fucosylated chondroitin sulfate (FCS) from Holothuria mexicana (FCS) was selected for investigation because of its intriguing branch features. Selective β-eliminative depolymerization and the bottom-up assembly were performed to unravel that FCS consisted of a {D-GlcA-β1,3-D-GalNAc} backbone and branches of alternating Fuc (55 %) and D-GalNAc-α1,2-L-Fuc (45 %), the highest proportion of disaccharide branch reported to date. In branches, sulfation could occur at every free -OH site except O-3 of GalNAc, being the most complex and various structure features of natural FCS.
View Article and Find Full Text PDFJ Clin Gastroenterol
January 2025
Department of Surgery, Oncology and Gastroenterology, University of Padua.
Among the various factors implicated in the pathogenesis of gastroesophageal reflux disease (GERD), visceral hypersensitivity and mucosal resistance have been recently re-evaluated in relation to the increasing phenomenon of proton pump inhibitor failure, particularly in patients with nonerosive reflux disease (NERD). Intensive research has allowed us to understand that noxious substances contained in the refluxate are able to interact with esophageal epithelium and to induce the elicitation of symptoms. The frequent evidence of microscopic esophagitis able to increase the permeability of the mucosa, the proximity of sensory afferent nerve fibers to the esophageal lumen favoring the higher sensitivity to noxious substances and the possible activation of inflammatory pathways interacting with sensory nerve endings are pathophysiological alterations confirming that mucosal resistance is impaired in GERD patients.
View Article and Find Full Text PDFArthrosc Sports Med Rehabil
December 2024
UConn Institute for Sports Medicine, University of Connecticut, Storrs, Connecticut, U.S.A.
Purpose: To evaluate whether cumulative impact load and serum biomarkers are related to lower-extremity injury and to determine any impact load and cartilage biomarker relationships in collegiate female basketball athletes.
Methods: This was a prospective longitudinal study evaluating lower-extremity impact load, serum cartilage biomarkers, and injury incidence over the course of a single collegiate women's basketball season. Data were collected from August 2022 to April 2023; no other follow-up after the cessation of the season was conducted in this cohort.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!