Novel population pharmacokinetic method compared to the standard noncompartmental approach to assess bioequivalence of iron gluconate formulations.

J Pharm Pharm Sci

Learn and Confirm Inc., 3630 Bois Franc, St-Laurent QC, Canada. Université de Montréal, Faculté de pharmacie, Pavillon Jean Coutu, 2940 Chemin de la polytechnique, Montreal QC, Canada.

Published: March 2014

AI Article Synopsis

  • The study investigates how to measure the bioavailability of two different sodium ferric gluconate complex (SFGC) formulations, comparing a new method to a traditional noncompartmental approach, due to the unique pharmacokinetics of iron.
  • Data from two open-label clinical studies were analyzed: Study 1 involved 240 subjects receiving a 125 mg dose, while Study 2 had 29 subjects receiving a 62.5 mg dose; both measured total iron and transferrin-bound iron over specified timeframes.
  • Results indicated that while the new population pharmacokinetic model showed promising bioequivalence for the formulations, the traditional analysis in Study 2 didn’t meet bioequivalence criteria

Article Abstract

Purpose: Iron-containing products are atypical in terms of their pharmacokinetic properties because iron is only removed by plasma sampling and is non-linear. This study aims to present a novel way of assessing the relative bioavailability of two sodium ferric gluconate complex (SFGC) formulations and compare this approach to a standard previously published noncompartmental approach.

Methods: Data were from open-label, randomized, single-dose studies (Study 1 was parallel whereas Study 2 was crossover). Subjects with low but normal iron levels were infused IV SFGC in sucrose by GeneraMedix Inc. and/or Ferrlecit ® Injection (Watson Laboratories Inc.). In Study 1 (n=240), 125 mg was infused over 10 minutes. In Study 2 (n=29), 62.5 mg was infused over 30 minutes. Samples were assayed for total iron (TI) and transferrin-bound iron (TBI) over 36 hours (Study 1) or 72 hours (Study 2) post-dose. Studies 1 and 2 used standard noncompartmental analysis. Study 2 also used population PK (PPK) analyses with ADAPT 5®. The final model predicted SFGC area-under-the-curve (AUCpred) and maximal concentration (Cmaxpred). Analyses of variance was conducted on ln-transformed PK parameters. Ratios of means and 90% confidence intervals (CIs) were estimated. Bioequivalence was demonstrated if values were within 80-125%.

Results: For Study 1, ratios and 90% CIs for TI baseline-corrected Cmax and AUC0-36 were 100.4 (96.5 - 104.5) and 99.7 (94.2 - 105.5). For TBI, results for TI baseline-corrected Cmax and AUC0-36 were 86.8 (82.7 - 91.1) and 92.4 (85.6 - 99.7). For Study 2, a multi-compartmental model simultaneously described the PK of TI, TBI and SFGC. Ratios and 90% CIs for SFGC Cmaxpred and AUCpred were 89.9 (85.9 - 94.0) and 89.7 (85.7 - 93.9), while ratios and 90% CI obtained from the noncompartmental analysis of Study 2 did not meet BE criteria because of low power.

Conclusions: Both the standard and PPK modeling approach suggested bioequivalence between the iron products. However, with the PPK method, less subjects were required to meet study objectives compared to the standard noncompartmental approach which required considerably more subjects (29 vs 240).

Download full-text PDF

Source
http://dx.doi.org/10.18433/j3hs42DOI Listing

Publication Analysis

Top Keywords

ratios 90%
16
standard noncompartmental
12
study
12
compared standard
8
noncompartmental approach
8
bioequivalence iron
8
infused minutes
8
hours study
8
noncompartmental analysis
8
analysis study
8

Similar Publications

Meta-analysis of MitraClip and PASCAL for transcatheter mitral edge-to-edge repair.

J Cardiothorac Surg

January 2025

Department of Internal Medicine II, Städtisches Klinikum Solingen, Solingen, Germany.

Background: Despite the promising results of both MitraClip and PASCAL systems for the treatment of mitral regurgitation (MR), there is limited data on the comparison of both systems regarding their safety and efficacy. We aim to compare both systems for MR.

Materials And Methods: Five databases were searched until October 2024.

View Article and Find Full Text PDF

Association between obstructive sleep apnea and hyperuricemia/gout in the general population: a cross-sectional study.

BMC Musculoskelet Disord

January 2025

Department of Internal Medicine, Division of Rheumatology, Soonchunhyang University Seoul Hospital, Soonchunhyang University School of Medicine, Seoul, South Korea.

Background: Obstructive sleep apnea (OSA) is linked to various health conditions, including cardiovascular diseases and metabolic disorders. Hyperuricemia and gout may be associated with OSA, but large-scale studies on this are limited. This study aimed to investigate the association between hyperuricemia/gout and OSA using data from the Korea National Health and Nutrition Survey (KNHANES).

View Article and Find Full Text PDF

This study explores the association between serum chloride concentrations and all-cause mortality among patients in the Surgical Intensive Care Unit (SICU). Employing a retrospective cohort design, the study utilized data extracted from the Medical Information Mart for Intensive Care IV (MIMIC-IV) database, specifically focusing on individuals admitted to the surgical/trauma ICUs. This dataset encompassed demographic profiles, laboratory findings, historical medical data, vital statistics, and variables pertinent to prognosis.

View Article and Find Full Text PDF

Background: Family income to poverty ratio (PIR) may have independent effects on diet and lifestyle factors and the development of prediabetes and diabetes, as well as on mortality. It is unclear how the protective effect of a healthy lifestyle against death differs between individuals with different glucose metabolic profiles and whether PIR mediates this effect. This study aimed to explore whether healthy lifestyle and family PIR reduced the risk of all-cause mortality in participants with different metabolic status and the mediating role of PIR.

View Article and Find Full Text PDF

Background: Multiparametric MRI (Mp-MRI) is a key tool to screen for Prostate Cancer (Pca) and Clinically Significant Prostate Cancer (CsPca). It primarily includes T2-Weighted imaging (T2w), diffusion-weighted imaging (DWI), and Dynamic Contrast-Enhanced imaging (DCE). Despite its improvements in CsPca screening, concerns about the cost-effectiveness of DCE persist due to its associated side effects, increased cost, longer acquisition time, and limitations in patients with poor kidney function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!