The Saccharomyces cerevisiae strain CBS6412 has been shown to be able to grow in synthetic medium containing glycerol as the sole carbon source, conditions under which laboratory strains such as CEN.PK and S288c cannot grow. Nonetheless, this strain exhibits a lag phase of c. 30-40 h following transition to glycerol medium. As mitochondria play a critical role in the dissimilation of the respiratory carbon source glycerol, we investigated mitochondrial function and dynamics throughout the lag phase using mitochondria-targeted roGFP, a redox-sensitive GFP variant. We found that following transition to glycerol medium, mitochondria become more oxidizing, accumulate near the bud neck, and exhibit decreased inheritance into daughter cells. Directly preceding entry into exponential growth phase, mitochondria become more reducing, mitochondrial accumulations at the bud neck decrease, and inheritance of mitochondria into daughter cells is restored.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1567-1364.12085DOI Listing

Publication Analysis

Top Keywords

lag phase
12
saccharomyces cerevisiae
8
glycerol sole
8
carbon source
8
transition glycerol
8
glycerol medium
8
medium mitochondria
8
bud neck
8
daughter cells
8
glycerol
5

Similar Publications

Porothermoelasticity of thermally shocked asphalt material under a multi-phase lag model.

Heliyon

January 2025

Department of Mathematics, Faculty of Science, Zagazig University, P.O. Box 44519, Zagazig, Egypt.

This investigation represents porothermoelastic asphalt material with thermal shock due to multi-phase lag model of thermoelasticity. By applying proper boundary conditions to the normal mode approach, we were able to achieve the precise solution. The graphs provide numerical results for the physical quantities supplied in physical domain.

View Article and Find Full Text PDF

Quantifying cognitive potential relies on psychometric measures that do not directly reflect cortical activity. While the relationship between cognitive ability and resting state EEG signal dynamics has been extensively studied in children with below-average cognitive performances, there remains a paucity of research focusing on individuals with normal to above-average cognitive functioning. This study aimed to elucidate the resting EEG dynamics in children aged four to 12 years across normal to above-average cognitive potential.

View Article and Find Full Text PDF

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder with an unclear pathogenesis to date. Neurofeedback (NFB) had shown therapeutic effects in patients with ASD. In this study,we analyzed the brain functional networks of children with ASD and investigated the impact of NFB targeting the beta rhythm training on these networks.

View Article and Find Full Text PDF

Microbial activity of the inoculum determines the impact of activated carbon, magnetite and zeolite on methane production.

Sci Total Environ

January 2025

CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Guimarães, Braga, Portugal. Electronic address:

The conversion of organic matter to methane through anaerobic digestion (AD) process can be enhanced by different materials. However, literature reports show inconsistent results on the effect of materials in different AD systems. In this study, we evaluated the influence of the inoculum's activity on methane production (MP) efficiency in the presence of different materials (activated carbon (AC), magnetite (Mag), and zeolite (Zeo)).

View Article and Find Full Text PDF

Purpose: Chronic jet lag (CJL) is known to disrupt circadian rhythms, which regulate various physiological processes, including ocular surface homeostasis. However, the specific effects of CJL on lacrimal gland function and the underlying cellular mechanisms remain poorly understood.

Methods: A CJL model was established using C57BL/6J mice.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!