The initial steps in the B4H10 pyrolysis mechanism have been elucidated. The mechanism can be divided into three stages: initial formation of B4H8, production of volatile boranes with B3H7 acting as a catalyst, and formation of nonvolatile products. The first step is B4H10 decomposition to either B4H8/H2 or B3H7/BH3 where the free energy barrier for the first pathway is 5.6 kcal/mol higher (G4, 333 K) than the second pathway when transition state theory (TST) is used. When variation transition state theory (VTST) is used for formation of B3H7/BH3, the two pathways become very similar in free energy with the B4H8/H2 pathway becoming favored at G4 by 1.0 kcal/mol at 333 K (33.1 versus 34.1 kcal/mol). The experimental activation energy for B4H10 pyrolysis is about 10 kcal/mol lower than the calculated barrier for B4H10 → B4H8 + H2, which indicates that this reaction is not the rate-determining step. We suggest that the rate-determining step is B4H10 + B3H7 → B4H8 + H2 + B3H7 where B3H7 acts as a catalyst. The role of reactive boron hydrides such as B3H7 and B4H8 as catalysts in the build-up of larger boron hydrides may be more common than that previously considered.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp405621u | DOI Listing |
J Phys Chem A
September 2013
Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, United States.
The initial steps in the B4H10 pyrolysis mechanism have been elucidated. The mechanism can be divided into three stages: initial formation of B4H8, production of volatile boranes with B3H7 acting as a catalyst, and formation of nonvolatile products. The first step is B4H10 decomposition to either B4H8/H2 or B3H7/BH3 where the free energy barrier for the first pathway is 5.
View Article and Find Full Text PDFChemistry
October 2010
Department of Chemistry, Indian Institute of Technology Madras, Chennai 600 036, India.
Reaction of [1,2-(Cp*RuH)(2)B(3)H(7)] (1; Cp*=η(5)-C(5)Me(5)) with [Mo(CO)(3)(CH(3)CN)(3)] yielded arachno-[(Cp*RuCO)(2)B(2)H(6)] (2), which exhibits a butterfly structure, reminiscent of 7 sep B(4)H(10). Compound 2 was found to be a very good precursor for the generation of bridged borylene species. Mild pyrolysis of 2 with [Fe(2)(CO)(9)] yielded a triply bridged heterotrinuclear borylene complex [(μ(3)-BH)(Cp*RuCO)(2)(μ-CO){Fe(CO)(3)}] (3) and bis-borylene complexes [{(μ(3)-BH)(Cp*Ru)(μ-CO)}(2)Fe(2)(CO)(5)] (4) and [{(μ(3)-BH)(Cp*Ru)Fe(CO)(3)}(2)(μ-CO)] (5).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!