Grifola frondosa, also known as maitake, is a culinary mushroom with immune-enhancing and antitumor effects. Numerous studies have investigated the activity of maitake polysaccharide extracts, but studies of maitake proteins are scarce. In this study, we purified and characterized a new G. frondosa protein, GFP, from maitake fruiting bodies. GFP is a nonglucan heterodimeric 83 kDa protein that consists of two 41 kDa subunits. GFP induced interferon-γ secretion by murine splenocytes and natural killer cells and activated the maturation of bone marrow-derived dendritic cells (BMDCs) via a TLR4-dependent mechanism. GFP-treated BMDCs promoted a Th1 response and exhibited significant antitumor activity when transferred into tumor-bearing mice. In conclusion, we are the first to reveal the critical role of GFP in modulating the immune response and to link the immune-enhancing effects of maitake to its antitumor activities.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jf4031184DOI Listing

Publication Analysis

Top Keywords

grifola frondosa
8
frondosa protein
8
natural killer
8
dendritic cells
8
maitake
6
characterization novel
4
novel maitake
4
maitake grifola
4
protein activates
4
activates natural
4

Similar Publications

Polysaccharide extracted from Grifola frondosa (GFP) was selected in this study. After preliminary separation, four factions were collected, named GFP-F1, GFP-F2, GFP-F3 and GFP-F4. GPF-F2 was further separated into two fractions, namely GFP-N1 and GFP-N2.

View Article and Find Full Text PDF

Maistero-2, a Novel Probe for Sterols: Application for Visualizing Cellular Cholesterol.

Methods Mol Biol

December 2024

Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Faculté de Pharmacie, Université de Strasbourg, Illkirch, France.

Maistero-2 is a novel, non-toxic cholesterol-binding protein derived from an edible mushroom Grifola frondosa mRNA. Maistero-2 specifically binds to lipid membranes containing 3-hydroxy sterols with a lower cholesterol concentration threshold than cholesterol-binding domain 4 (D4) of perfringolysin O (PFO) and anthrolysin O (ALO). Maistero-2 binding is particularly sensitive to the size and conformation of the A-, B-, and D-ring of sterols but not very sensitive to modifications of the isooctyl side chain commonly found in phytosterols.

View Article and Find Full Text PDF

Expensive fetal bovine serum (FBS) is a major obstacle to the production of cultivated meat. However, because FBS substitutes do not sufficiently induce cell proliferation, a good alternative is to reduce the amount of FBS and use ingestible additives to promote cell proliferation. In this study, Grifola frondosa extract (GFE) was used to investigate its potential as an additive to promote myogenesis of bovine muscle satellite cells from Hanwoo cattle under low serum conditions (10 % FBS).

View Article and Find Full Text PDF

Grifola frondosa Polysaccharide Ameliorates Inflammation by Regulating Macrophage Polarization of Liver in Type 2 Diabetes Mellitus Rats.

Mol Nutr Food Res

December 2024

The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of, Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, School of Public Health, Guizhou Medical University, Guiyang, 561113, China.

Scope: Grifola frondosa polysaccharide (GFP) has a positive effect in regulating type 2 diabetes mellitus (T2DM), but the understanding of its regulatory mechanism is still limited. Accumulating evidence suggests that hepatic inflammation is crucial in the onset and progression of insulin resistance (IR) and T2DM. However, the question of whether GFP can modulate T2DM via regulating hepatic inflammation and the underlying mechanism has not yet been reported.

View Article and Find Full Text PDF

Polysaccharide with anticancer activity from Grifola frondosa cultured in industrial wastewater of Agaricus bisporus.

Int J Biol Macromol

December 2024

Engineering Technological Center of Mushroom Industry, Minnan Normal University, Zhangzhou, Fujian, China; School of Life Sciences & Biotechnology College, Minnan Normal University, Zhangzhou, Fujian, China; Mengdel (Xiamen) Biotechnology Co., LTD, Xiamen, Fujian, China. Electronic address:

Culture conditions for Grifola frondosa using Agaricus bisporus industrial wastewater as a medium were optimized using Plackett-Burman and Box-Behnken methodologies. Plackett-Burman screening identified culture temperature, shaking speed, and wastewater solubility as the key factors influencing G. frondosa biomass.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!