Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Using marine sediment traps (named RESPIRE for REspiration of Sinking Particles In the subsuRface ocEan) designed to collect sinking particles and associated microbial communities in situ, we collected and incubated marine aggregates/particles in the southern Pacific Ocean from separate phytoplankton bloom events in situ. We determined the phylogenetic affiliation for the microorganisms growing on aggregates by pyrosequencing partial 16S rRNA gene amplicons. Water column samples were also collected and sequenced for comparison between sinking-particle-associated and planktonic bacterial communities. Statistically significant differences were found between the water column and sediment trap bacteria. Relative abundances of Pelagibacter sp. and multiple members of the Flavobacteria, Actinobacteria, and α-Proteobacteria were elevated in water column samples, while trap samples contained members of the Roseobacter clade of α-Proteobacteria in high relative abundances. Our findings indicated that rapid changes - within 24 h of collection - occurred to the microbial community associated with aggregates from either bloom type. There was a little change in the bacterial assemblage after the initial 24-h incubation period. The most abundant early colonizer was a Sulfitobacter sp. This study provides further evidence that Roseobacters are rapid colonizers of marine aggregates and that colonization can occur on short timescales. This study further demonstrates that particle origin may be insignificant regarding the heterotrophic bacterial population that degrades them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/1574-6941.12213 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!