Alzheimer's disease (AD) is characterized by intraneuronal β-amyloid plaques and hyperphosphorylated tau, leading to neuronal cell death and progressive memory losses. This exploratory work investigates if dietary resveratrol, previously shown to have broad anti-aging effects and improve AD pathology in vivo, leads to neuroprotective changes in specific protein targets in the mouse brain. Both wild-type and APP/PS1 mice, a transgenic AD mouse model, received control AIN-93G diet or AIN-93G supplemented with resveratrol. Pathology parameters and AD risk were assessed via measurements on plaque burden, levels of phosphorylated glycogen synthase kinase 3-β (GSK3-β), tau, transthyretin and drebrin. Dietary resveratrol treatment did not decrease plaque burden in APP/PS1 mice. However, resveratrol-fed mice demonstrated increases in GSK3-β phosphorylation, a 3.8-fold increase in protein levels of transthyretin, and a 2.2-fold increase in drebrin. This study broadens our understanding of specific mechanisms and targets whereby resveratrol provides neuroprotection.

Download full-text PDF

Source
http://dx.doi.org/10.3109/09637486.2013.832171DOI Listing

Publication Analysis

Top Keywords

glycogen synthase
8
synthase kinase
8
protein levels
8
dietary resveratrol
8
app/ps1 mice
8
plaque burden
8
resveratrol
5
resveratrol increases
4
increases cerebral
4
cerebral glycogen
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!