A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Active and passive control of zinc phthalocyanine photodynamics. | LitMetric

Active and passive control of zinc phthalocyanine photodynamics.

Faraday Discuss

Optical Sciences Group, MESA+ Institute for Nanotechnology, University of Twente, PO Box 217, 7500 AE Enschede, The Netherlands.

Published: September 2013

In this work we report on the ultrafast photodynamics of the photosensitizer zinc phthalocyanine (ZnPc) and manipulation thereof. Two approaches are followed: active control via pulse shaping and passive control via strategic manipulation in the periphery of the molecular structure. The objective of both of these control experiments is the same: to enhance the yield of the functional pathway and to minimize loss channels. The aim of the active control experiments is to increase the intersystem crossing yield in ZnPc, which is important for application in photodynamic therapy (PDT). Pulse shaping allowed an improvement in triplet to singlet ratio of 15% as compared to a transform-limited pulse. This effect is ascribed to a control mechanism that utilizes multiphoton pathways to higher-lying states from where intersystem crossing is more likely to occur. The passive control experiments are performed on ZnPc derivatives deposited onto TiO2, serving as a model system of a dye-sensitized solar cell (DSSC). Modification of the anchoring ligand of the molecular structure resulted in an increased rate for electron injection into TiO2 and slower back electron transfer, improving the DSSC efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c3fd20156bDOI Listing

Publication Analysis

Top Keywords

passive control
12
control experiments
12
zinc phthalocyanine
8
active control
8
pulse shaping
8
molecular structure
8
intersystem crossing
8
control
7
active passive
4
control zinc
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!