Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Steroid therapy, due to a wide range of anti-inflammatory properties of steroids, is a basic field of treatment in many human diseases including the nephrotic syndrome in children. However, not all patients respond positively to therapy which divides them into steroid sensitive (SS) and steroid resistance (SR) individuals. Many potential factors associated with steroid resistance have been identified so far. It seems that genetic factors associated with glucocorticoid receptor α (GRα), the structure of heterocomplex of GR as well as glycoprotein P or cytochrome P450 may play a role in the induction of glucocorticoid resistance. Here we described several of the molecular mechanisms, which can regulate glucocorticoid sensitivity and resistance. Moreover, we presented genetic defects, which can lead to various effects of treatment and, in a longer perspective, enable clinicians to individualize therapies.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!