Shugoshin (SGO) is a critical factor that enforces cohesion from segregation of paired sister chromatids during mitosis and meiosis. It has been studied mainly in invertebrates. Knowledge of SGO(s) in a mammalian system has only been reported in the mouse and Hela cells. In this study, the functions of SGO1 in bovine oocytes during meiotic maturation, early embryonic development and somatic cell mitosis were investigated. The results showed that SGO1 was expressed from germinal vesicle (GV) to the metaphase II stage. SGO1 accumulated on condensed and scattered chromosomes from pre-metaphase I to metaphase II. The over-expression of SGO1 did not interfere with the process of homologous chromosome separation, although once separated they were unable to move to the opposing spindle poles. This often resulted in the formation of oocytes with 60 replicated chromosomes. Depletion of SGO1 in GV oocytes affected chromosomal separation resulting in abnormal chromosome alignment at a significantly higher proportion than in control oocytes. Knockdown of SGO1 expression significantly decreased the embryonic developmental rate and quality. To further confirm the function(s) of SGO1 during mitosis, bovine embryonic fibroblast cells were transfected with SGO1 siRNAs. SGO1 depletion induced the premature dissociation of chromosomal cohesion at the centromere and along the chromosome arm giving rise to abnormal appearing mitotic patterns. The results of this study infer that SGO1 is involved in the centromeric cohesion of sister chromatids and chromosomal movement towards the spindle poles. Depletion of SGO1 causes arrestment of cell division in meiosis and mitosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760824PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0073636PLOS

Publication Analysis

Top Keywords

sgo1
12
sister chromatids
12
functions sgo1
8
spindle poles
8
depletion sgo1
8
sgo1 maintains
4
maintains bovine
4
bovine meiotic
4
meiotic mitotic
4
mitotic centromeric
4

Similar Publications

Molecular mechanism targeting condensin for chromosome condensation.

EMBO J

December 2024

Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom.

Genomes are organised into DNA loops by the Structural Maintenance of Chromosomes (SMC) proteins. SMCs establish functional chromosomal sub-domains for DNA repair, gene expression and chromosome segregation, but how SMC activity is specifically targeted is unclear. Here, we define the molecular mechanism targeting the condensin SMC complex to specific chromosomal regions in budding yeast.

View Article and Find Full Text PDF

Molecular mechanism of condensin I activation by KIF4A.

EMBO J

December 2024

DNA Motors Group, MRC Laboratory of Medical Sciences (LMS), Du Cane Road, London, W12 0HS, UK.

During mitosis, the condensin I and II complexes compact chromatin into chromosomes. Loss of the chromokinesin, KIF4A, results in reduced condensin I association with chromosomes, but the molecular mechanism behind this phenotype is unknown. In this study, we reveal that KIF4A binds directly to the human condensin I HAWK subunit, NCAPG, via a conserved disordered short linear motif (SLiM) located in its C-terminal tail.

View Article and Find Full Text PDF

Shugoshin 1 (SGO1) is one of the Shugoshin (guardian spirit) family proteins, which is reported to be majorly involved in the protection of centromeres and proper segregation of chromosomes during cell division. Recent studies found that the altered expression of SGO1 is associated with various cancers and genetic disorders, and suggested as a target for therapy. In the present study, we have reviewed the available literature on SGO1 gene and protein expression in various cancer-cell lines, animal models and cancer patients, and targeting SGO1 with siRNA/shRNA.

View Article and Find Full Text PDF

Novel insights into the circadian modulation of lipid metabolism in chicken livers revealed by RNA sequencing and weighted gene co-expression network analysis.

Poult Sci

December 2024

Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, 311300, Zhejiang, China. Electronic address:

The circadian clock is crucial for maintaining lipid metabolism homeostasis in mammals. Despite the economic importance of fat content in poultry, research on the regulatory effects and molecular mechanisms of the circadian clock on avian hepatic lipid metabolism has been limited. In this study, we observed significant diurnal variations (P<0.

View Article and Find Full Text PDF

Sister chromatid cohesion is mediated by the cohesin complex. In mitotic prophase cohesin is removed from chromosome arms in a Wapl- and phosphorylation-dependent manner. Sgo1-PP2A protects pericentromeric cohesion by dephosphorylation of cohesin and its associated Wapl antagonist sororin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!