Amino acid residues critical for a protein's structure-function are retained by natural selection and these residues are identified by the level of variance in co-aligned homologous protein sequences. The relevant residues in the nitrogen fixation Component 1 α- and β-subunits were identified by the alignment of 95 protein sequences. Proteins were included from species encompassing multiple microbial phyla and diverse ecological niches as well as the nitrogen fixation genotypes, anf, nif, and vnf, which encode proteins associated with cofactors differing at one metal site. After adjusting for differences in sequence length, insertions, and deletions, the remaining >85% of the sequence co-aligned the subunits from the three genotypes. Six Groups, designated Anf, Vnf , and Nif I-IV, were assigned based upon genetic origin, sequence adjustments, and conserved residues. Both subunits subdivided into the same groups. Invariant and single variant residues were identified and were defined as "core" for nitrogenase function. Three species in Group Nif-III, Candidatus Desulforudis audaxviator, Desulfotomaculum kuznetsovii, and Thermodesulfatator indicus, were found to have a seleno-cysteine that replaces one cysteinyl ligand of the 8Fe:7S, P-cluster. Subsets of invariant residues, limited to individual groups, were identified; these unique residues help identify the gene of origin (anf, nif, or vnf) yet should not be considered diagnostic of the metal content of associated cofactors. Fourteen of the 19 residues that compose the cofactor pocket are invariant or single variant; the other five residues are highly variable but do not correlate with the putative metal content of the cofactor. The variable residues are clustered on one side of the cofactor, away from other functional centers in the three dimensional structure. Many of the invariant and single variant residues were not previously recognized as potentially critical and their identification provides the bases for new analyses of the three-dimensional structure and for mutagenesis studies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3760896 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0072751 | PLOS |
Sci Rep
January 2025
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia.
The monkeypox virus (MPXV), which is a member of the Orthopoxvirus genus in the class Poxviridae, is the causative agent of the zoonotic viral infection MPXV. The disease is similar to smallpox, but it is usually less dangerous. This study examines the evolution of the MPXV epidemic in Canada with an emphasis on the effects of control employing actual data.
View Article and Find Full Text PDFJ Neurosci
January 2025
Oregon Hearing Research Center, Oregon Health and Science University, Portland, OR 97239, USA
In everyday hearing, listeners face the challenge of understanding behaviorally relevant foreground stimuli (speech, vocalizations) in complex backgrounds (environmental, mechanical noise). Prior studies have shown that high-order areas of human auditory cortex (AC) pre-attentively form an enhanced representation of foreground stimuli in the presence of background noise. This enhancement requires identifying and grouping the features that comprise the background so they can be removed from the foreground representation.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Key Laboratory of Modern Acoustics, Institute of Acoustics, Nanjing University, Nanjing 210093, China.
Beamforming technology using loudspeaker arrays is widely used in sound applications, but current sparse array design methods focus on optimizing a single beam for a single target direction, limiting their applicability to multi-channel sound systems. This paper presents a design method for sparse loudspeaker line arrays to generate wideband frequency-invariant beams in multiple target directions. A model based on tapped delay lines is developed and a two-stage design approach is proposed.
View Article and Find Full Text PDFMagn Reson Med
January 2025
Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
Purpose: To develop a deep subspace learning network that can function across different pulse sequences.
Methods: A contrast-invariant component-by-component (CBC) network structure was developed and compared against previously reported spatiotemporal multicomponent (MC) structure for reconstructing MR Multitasking images. A total of 130, 167, and 16 subjects were imaged using T, T-T, and T-T- -fat fraction (FF) mapping sequences, respectively.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!