SOX12 and NRSN2 are candidate genes for 20p13 subtelomeric deletions associated with developmental delay.

Am J Med Genet B Neuropsychiatr Genet

Institutes of Biomedical Sciences, Children's Hospital and MOE Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, China; Department of Laboratory Medicine, Boston Children's Hospital, Boston, Massachusetts.

Published: December 2013

20p13 telomeric/subtelomeric deletions are clinically significant but are currently under-investigated. So far only five molecularly delineated cases have been reported in literature and no candidate genes have been sufficiently implicated. Here, we present six new deletion cases identified by chromosomal microarray analysis (CMA). We also review 32 cases combined from literature and databases. We found that most 20p13 deletion patients exhibit significant developmental delay. Dysmorphic features are common but a consistent pattern was not recognized. Reduced cognitive ability was frequent. Based on pathogenic deletions delineated in this study, we mapped the smallest overlapping region and identified two nervous system expressing genes (SOX12 and NRSN2) as candidate genes that may be involved in the developmental defects in 20p13 microdeletion.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ajmg.b.32187DOI Listing

Publication Analysis

Top Keywords

candidate genes
12
sox12 nrsn2
8
nrsn2 candidate
8
developmental delay
8
genes
4
20p13
4
genes 20p13
4
20p13 subtelomeric
4
subtelomeric deletions
4
deletions associated
4

Similar Publications

Background: Traumatic Brain Injury (TBI) is one of the most common nonheritable causes of Alzheimer's disease (AD). However, there is lack of effective treatment for both AD and TBI. We posit that network-based integration of multi-omics and endophenotype disease module coupled with large real-world patient data analysis of electronic health records (EHR) can help identify repurposable drug candidates for the treatment of TBI and AD.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWAS) have identified close to one hundred loci associated with Alzheimer's disease (AD) risk. However, for most of these loci we do not understand the underlying mechanism leading to disease. Crispr genome editing in human induced pluripotent stem cells (hiPSCs) provides a model system to study the effects of these genetic variants in a disease relevant cell type.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

UCSD, San Diego, CA, USA.

Cerebral beta-amyloid accumulation is the key initiator of Alzheimer's disease (AD) pathology. Most familial early-onset AD mutations in the APP, PSEN1/2 genes increase the ratio of Abeta42:Abeta40, which drives beta-amyloid accumulation in the brain. In 2001, the late Steve Wagner, Maria Kounnas, and I directed an agnostic high-throughput screen for compounds that would reverse the Abeta42:Abeta40, ratio, and discovered the first non-NSAID (second generation) gamma secretase modulators (GSM) at TorreyPines Therapeutics.

View Article and Find Full Text PDF

Killer Cell Lectin Like Receptor D1 (KLRD1) plays a crucial role in antitumor immunity. However, its expression patterns across various cancers, its relationship with patient prognosis, and its potential as an immunotherapy target remain inadequately understood. We analyzed KLRD1 expression across various cancer types using multi-omics data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), and Gene Expression Omnibus (GEO) databases, correlating it with patient prognosis.

View Article and Find Full Text PDF

Identifying the role of cellulase gene upon the infection of subsp. in citrus.

Mol Breed

January 2025

Engineering Research Center of Education Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, College of Horticulture, Hunan Agricultural University, Changsha, 410128 China.

Unlabelled: Citrus canker is a devastating disease caused by subsp. (), which secretes the effector PthA4 into host plants to trigger transcription of the susceptibility gene , resulting in pustule formation. However, the molecular mechanism underlying CsLOB1-mediated susceptibility to remains elusive.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!