A series of rare earth (RE) doped oxyfluoride glasses with the composition of (45-x) SiO2-5Al2O3-40PbF2-10CdF2-xRe2O3 (x = 1, 5, 10, 15) (mol%) were prepared by a traditional melt-quenching method. Glass ceramics (GCs) were obtained after thermal treatment and characterized by X-ray diffraction (XRD) to investigate the nanocrystal structure and distortion. Both the dopant type and the doping level play an important role in the distortion of the PbF2-RE lattice. It is found that a cubic Pb3REF9 phase forms in low doping GCs, a tetragonal PbREF5 phase forms in middle doping GCs and cubic PbRE3F11 forms in high doping GCs. Accordingly, the site symmetry of RE(3+) dopants in β-PbF2 nanocrystal undergoes a transition of Oh···D4h···Oh with the increase of doping level. The change in the ligands coordinating the RE(3+) ions was further illustrated by the optical changes in Yb-doped GCs. This paper provides insights on the nanocrystal structure of RE at the atomic level and tries to make a complete description of the nanocrystal structure and distortion in these glass-ceramic materials, which will benefit the optimization of optical properties.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c3cp53073f | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFBrief Bioinform
November 2024
School of Engineering, Westlake University, No. 600 Dunyu Road, 310030 Zhejiang, P.R. China.
Single-cell RNA sequencing (scRNA-seq) offers remarkable insights into cellular development and differentiation by capturing the gene expression profiles of individual cells. The role of dimensionality reduction and visualization in the interpretation of scRNA-seq data has gained widely acceptance. However, current methods face several challenges, including incomplete structure-preserving strategies and high distortion in embeddings, which fail to effectively model complex cell trajectories with multiple branches.
View Article and Find Full Text PDFTzu Chi Med J
August 2024
Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.
Schizophrenia (SCZ) is a chronic psychotic disorder that profoundly alters an individual's perception of reality, resulting in abnormal behavior, cognitive deficits, thought distortions, and disorientation in emotions. Many complicated factors can lead to SCZ, and investigations are ongoing to understand the neurobiological underpinnings of this condition. Presynaptic Netrin G1 and its cognate partner postsynaptic Netrin-G-Ligand-1 (NGL-1) have been implicated in SCZ.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Biochemistry, Jawaharlal Nehru Medical College, Faculty of Medicine, Aligarh Muslim University, Aligarh, Uttar Pradesh, India. Electronic address:
Persistence of long-term hyperglycemia results in the glyco-oxidation of plasma proteins, which is considered to be a significant factor in metabolic dysfunction, linking hyperglycemia to the emergence of vascular complications. Methylglyoxal (MGO), a dicarbonyl species formed excessively under diabetes, elevates the oxidative stress, enhancing the generation of superoxide anion, which ultimately reacts with nitric oxide (NO•) to form peroxynitrite (PON). PON, being a powerful nitro-oxidizing agent distorts protein structure, hampering its function.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Physical Chemistry, Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing 100083, China.
Lattice distortion and disorder in the chemical environment of magnetic atoms within high-entropy compounds present intriguing issues in the modulation of magnetic functional compounds. However, the complexity inherent in high-entropy disordered systems has resulted in a relative scarcity of comprehensive investigations exploring the magnetic functional mechanisms of these alloys. Herein, we investigate the magnetocaloric effect (MCE) of the high-entropy intermetallic compound GdTbDyHoErCo.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!