Scope: We have previously demonstrated that oleuropein (OL) and hydroxytyrosol (HT) reduce 17β-estradiol-mediated proliferation in MCF-7 breast cancer (BC) cells without affecting the classical genomic action of estrogen receptor (ER), but activating instead the ERK1/2 pathway. Here, we hypothesized that this inhibition could be mediated by a G-protein-coupled receptor named GPER/GPR30. Using the ER-negative and GPER-positive SKBR3 BC cells as experimental model, we investigated the effects of OL and HT on GPER-mediated activation of downstream pathways.
Methods And Results: Docking simulations and ligand-binding studies evidenced that OL and HT are able to bind GPER. MTT cell proliferation assays revealed that both phenols reduced SKBR3 cell growth; this effect was abolished silencing GPER. Focusing on OL and HT GPER-mediated pathways, using Western blot analysis we showed a sustained ERK1/2 activation triggering an intrinsic apoptotic pathway.
Conclusion: Showing that OL and HT work as GPER inverse agonists in ER-negative and GPER-positive SKBR3 BC cells, we provide novel insights into the potential of these two molecules as tools in the therapy of this subtype of BC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mnfr.201300323 | DOI Listing |
Foods
January 2025
Laboratory of Food Chemistry and Technology, School of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
Virgin avocado oil (VAO), treasured for its nutritional and sensory properties, is susceptible to oxidation. To improve its oxidative stability, the feasibility of enrichment with antioxidants from avocado or olive-processing by-products via ultrasound-assisted maceration was explored. Dried, milled avocado (AL), olive leaves (OL), or olive pomace (OP) were ultrasound-macerated with laboratory-extracted VAO at 5, 10, and 20% levels.
View Article and Find Full Text PDFCrit Rev Food Sci Nutr
January 2025
Department of Pharmaceutical Botany, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.
The so-called Mediterranean diet, with olive oil as a key component, is effective in reducing cardiometabolic disease risk. Olive oil consumption improves blood pressure, insulin levels and resistance, supporting heart health and glycemic control. Its phenolic compounds, including oleuropein (OLE), hydroxytyrosol (HT), and tyrosol (TYR) are hypothesized to likely contribute to these benefits.
View Article and Find Full Text PDFFood Chem (Oxf)
June 2025
Dept. of Biomedical and Biotechnological Sciences, University of Catania.
In the last few years, many efforts have been devoted to the recovery and valorization of olive oil by-products because of their potentially high biological value. The olive mill wastewater (OMWW), a dark-green brown colored liquid that mainly consists of fruit vegetation water, is particularly exploited in this regard for its great content in phenolic compounds with strong antioxidant properties. In our previous work, we produced different OMWW fractions enriched in hydroxytyrosol- and hydroxytyrosol/oleuropein (i.
View Article and Find Full Text PDFFoods
December 2024
Veterinary Research Institute, Hellenic Agricultural Organization, DIMITRA, 57001 Thessaloniki, Greece.
This research evaluated the impact of incorporating dried olive pulp (OP) into the feed of laying hens on the fatty acid profile, cholesterol, triglyceride, total phenolic, oleuropein and hydroxytyrosol content, and health lipid indices of eggs produced by mid- (39 weeks) and late-laying (59 weeks) birds. Over a 36-week trial, 300 eggs from 180 Isa-Brown hens, assigned to three dietary groups with different OP levels (CON, OP4 and OP6), were analyzed. OP reduced egg cholesterol, with significant effects in late-age eggs ( < 0.
View Article and Find Full Text PDFBMC Chem
January 2025
Department of Biochemistry, Faculty of Pharmacy, Adıyaman University, Adıyaman, 02000, Türkiye.
This study investigates the phenolic compounds (PC), volatile compounds (VC), and fatty acids (FA) of extra virgin olive oil (EVOO) derived from the Turkish olive variety "Sarı Ulak", along with ADMET, DFT, molecular docking, and gene network analyses of significant molecules identified within the EVOO. Chromatographic methods (GC-FID, HPLC) were employed to characterize FA, PC, and VC profiles, while quality parameters, antioxidant activities (TAC, ABTS, DPPH) were assessed via spectrophotometry. The analysis revealed a complex composition of 40 volatile compounds, with estragole, 7-hydroxyheptene-1, and 3-methoxycinnamaldehyde as the primary components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!