Niche factors are important in the maintenance and regulation of stem cells. Limbal stromal cells are potentially a component of limbal stem cell (LSC) niche. We investigated the role of the limbal stromal cells in the ex vivo expansion of limbal stem/progenitor cells. Limbal epithelial cells were cultured as single-cell suspension and cell clusters from dispase II or collagenase A (ColA), or tissue explant. ColA isolated limbal stromal cells along with limbal epithelial cells. In the presence of limbal stromal cells, a higher absolute number of p63α(bright) cells (p < 0.05) and a higher proportion of K14 positive epithelial cells were obtained from both ColA and explant tissue cultures. Expansion of the stem/progenitor population from dispase isolation was more efficient in the form of cell clusters than single cell suspension based on the absolute number of p63α(bright) cells. Expansion of the stem cell population is similar in the single cell and cell cluster cultures that are derived from ColA isolation. Our finding suggests that limbal stromal cells and an intact cell-cell contact help to maintain LSCs in an undifferentiated state in vitro during expansion.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3900305 | PMC |
http://dx.doi.org/10.1016/j.exer.2013.08.020 | DOI Listing |
Invest Ophthalmol Vis Sci
January 2025
Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand.
Purpose: Progenitors for the corneal endothelium have been identified in the transition zone (TZ), but their cellular interactions remain undefined. Posterior limbal mesenchymal stromal cells (P-LMSCs) may support TZ cells in the posterior limbus. This study aims to characterize P-LMSCs and investigate their effects on TZ cells.
View Article and Find Full Text PDFActa Biomater
January 2025
Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:
Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.
View Article and Find Full Text PDFCurr Eye Res
January 2025
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Congenital Aniridia Research, Saarland University, Saar, Germany.
Purpose: Our aim was to examine the expression of PAX6 and keratocyte-specific markers in human limbal stromal cells (LSCs) in congenital aniridia (AN) and in healthy corneas, .
Methods: Primary human LSCs were extracted from individuals with aniridia (AN-LSCs) ( = 8) and from healthy corneas (LSCs) ( = 8). The cells were cultured in either normal-glucose serum-containing cell culture medium (NGSC-medium) or low-glucose serum-free cell culture medium (LGSF-medium).
Cornea
November 2024
External Diseases. Moorfield's Eye Hospital, London, United Kingdom.
Purpose: To describe and report the outcomes of allogeneic eccentric superficial anterior lamellar keratoplasty (SALK), a novel surgical technique, in the management of total bilateral limbal stem cell deficiency (LSCD).
Methods: Data were collected retrospectively on all patients with total bilateral LSCD who underwent SALK. Previous surgery, preexisting glaucoma, conjunctivalization, vascularization, lens status, and preoperative best-corrected visual acuity (BCVA) were collected from medical notes.
Cells
December 2024
Department of Ophthalmology and Visual Sciences, University of Illinois Chicago, Chicago, IL 60612, USA.
Mustard gas keratopathy (MGK), a complication of exposure to sulfur mustard, is a blinding ocular surface disease involving key cellular pathways, including apoptosis, oxidative stress, and inflammation. Recent studies indicate that cellular senescence contributes to the pathophysiology of mustard gas toxicity. This study aimed to assess senescence and stress-related pathways-particularly mitogen-activated protein kinase (MAPK) signaling-in nitrogen mustard (NM)-induced corneal injury.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!