AI Article Synopsis

Article Abstract

Background: Previous studies have reported the lower reference limit (LRL) of quantitative cord glucose-6-phosphate dehydrogenase (G6PD), but they have not used approved international statistical methodology. Using common standards is expecting to yield more true findings. Therefore, we aimed to estimate LRL of quantitative G6PD detection in healthy term neonates by using statistical analyses endorsed by the International Federation of Clinical Chemistry (IFCC) and the Clinical and Laboratory Standards Institute (CLSI) for reference interval estimation.

Methods: This cross sectional retrospective study was performed at King Abdulaziz Hospital, Saudi Arabia, between March 2010 and June 2012. The study monitored consecutive neonates born to mothers from one Arab Muslim tribe that was assumed to have a low prevalence of G6PD-deficiency. Neonates that satisfied the following criteria were included: full-term birth (37 weeks); no admission to the special care nursery; no phototherapy treatment; negative direct antiglobulin test; and fathers of female neonates were from the same mothers' tribe. The G6PD activity (Units/gram Hemoglobin) was measured spectrophotometrically by an automated kit. This study used statistical analyses endorsed by IFCC and CLSI for reference interval estimation. The 2.5th percentiles and the corresponding 95% confidence intervals (CI) were estimated as LRLs, both in presence and absence of outliers.

Results: 207 males and 188 females term neonates who had cord blood quantitative G6PD testing met the inclusion criteria. Method of Horn detected 20 G6PD values as outliers (8 males and 12 females). Distributions of quantitative cord G6PD values exhibited a normal distribution in absence of the outliers only. The Harris-Boyd method and proportion criteria revealed that combined gender LRLs were reliable. The combined bootstrap LRL in presence of the outliers was 10.0 (95% CI: 7.5-10.7) and the combined parametric LRL in absence of the outliers was 11.0 (95% CI: 10.5-11.3).

Conclusion: These results contribute to the LRL of quantitative cord G6PD detection in full-term neonates. They are transferable to another laboratory when pre-analytical factors and testing methods are comparable and the IFCC-CLSI requirements of transference are satisfied. We are suggesting using estimated LRL in absence of the outliers as mislabeling G6PD-deficient neonates as normal is intolerable whereas mislabeling G6PD-normal neonates as deficient is tolerable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3846643PMC
http://dx.doi.org/10.1186/1471-2431-13-137DOI Listing

Publication Analysis

Top Keywords

quantitative cord
16
term neonates
12
lrl quantitative
12
absence outliers
12
neonates
9
lower reference
8
cord glucose-6-phosphate
8
glucose-6-phosphate dehydrogenase
8
healthy term
8
clinical laboratory
8

Similar Publications

Background: Umbilical cord care is an important aspect of newborn health, and different practices exist around the world, often influenced by cultural, healthcare infrastructure, and socioeconomic factors. The objective of this systematic review is to synthesize current literature on umbilical cord care practices in Nigeria, with an emphasis on the impact of cultural beliefs, healthcare infrastructure, and socioeconomic factors.

Methods: A comprehensive search for literature was performed across PubMED, MEDLINE and Google scholar for studies published between 2010 and 2023.

View Article and Find Full Text PDF

Human chitinolytic enzymes trigger growing interest, not only because a wide range of diseases and allergic responses are linked to chitinous components of pathogens, including their interplay with human enzymes, but also due to the increasing use of chitosans in biomedical applications. Here, we present a detailed side-by-side analysis of the only two human chitinases, chitotriosidase and acidic mammalian chitinase, as well as human lysozyme. By analyzing the cleavage of well-characterized chitosan polymers and defined chitin and chitosan oligomers, we report mild processivity and a quantitative subsite preference typical for GH18 chitinases for chitotriosidase and acidic mammalian chitinase.

View Article and Find Full Text PDF

C3/C3aR Bridges Spinal Astrocyte-Microglia Crosstalk and Accelerates Neuroinflammation in Morphine-Tolerant Rats.

CNS Neurosci Ther

January 2025

Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.

Aims: Communication within glial cells acts as a pivotal intermediary factor in modulating neuroimmune pathology. Meanwhile, an increasing awareness has emerged regarding the detrimental role of glial cells and neuroinflammation in morphine tolerance (MT). This study investigated the influence of crosstalk between astrocyte and microglia on the evolution of morphine tolerance.

View Article and Find Full Text PDF

Sepsis is a risk factor associated with increasing neonatal morbidity and mortality, acute lung injury, and chronic lung disease. While stem cell therapy has shown promise in alleviating acute lung injury, its effects are primarily exerted through paracrine mechanisms rather than local engraftment. Accumulating evidence suggests that these paracrine effects are mediated by mesenchymal stem cell (MSC)-derived small extracellular vesicles (sEVs), which play a critical role in immune system modulation and tissue regeneration.

View Article and Find Full Text PDF

Background: We examined chronic gadolinium retention impact on gene expression in the mouse central nervous system (CNS) after injection of linear or macrocyclic gadolinium-based contrast agents (GBCAs).

Methods: From 05/2022 to 07/2023, 36 female mice underwent weekly intraperitoneal injections of gadodiamide (2.5 mmol/kg, linear), gadobutrol (2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!