Eumelanin is not only a ubiquitous pigment among living organisms with photoprotective and antioxidant functions, but is also the subject of intense interest in materials science due to its photoconductivity and as a possible universal coating platform, known as "polydopamine films". The structure of eumelanin remains largely elusive, relying either on a polymeric model or on a heterogeneous aggregate structure. The structure of eumelanin as well as that of the closely related "polydopamine films" can be modified by playing on the nature of the oxidant used to oxidize dopamine or related compounds. In this investigation, we show that dopamine-eumelanins produced from dopamine in the presence of either air (O2 being the oxidant) or Cu(2+) cations display drastically different optical and colloidal properties in relation with a different supramolecular assembly of the oligomers of 5,6 dihydroxyindole, the final oxidation product of dopamine. The possible origin of these differences is discussed on the basis of Cu(2+) incorporation in Cu dopamine-eumelanin.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la4029782DOI Listing

Publication Analysis

Top Keywords

cu2+ cations
8
"polydopamine films"
8
structure eumelanin
8
comparison synthetic
4
synthetic dopamine-eumelanin
4
dopamine-eumelanin formed
4
formed presence
4
presence oxygen
4
oxygen cu2+
4
cations oxidants
4

Similar Publications

Consecutive C-C Coupling of CH and CO Mediated by Heteronuclear Metal Cations CuTa.

J Am Chem Soc

December 2024

Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.

The conversion of methane and carbon dioxide to form C products is of great interest but presents a long-standing grand challenge due to the significant obstacle of activating the inert C-H and C═O bonds as well as forming the C-C bonds. Herein, the consecutive C-C coupling of CH and CO was realized by using heteronuclear metal cations CuTa, and the desorption of HC═C═O molecules was evidenced by state-of-the-art mass spectrometry. The CuTa reaction system is significantly different from the homonuclear metal systems of Cu and Ta.

View Article and Find Full Text PDF

Optimizing soil remediation with multi-functional L-PH hydrogel: Enhancing water retention and heavy metal stabilization in farmland soil.

Sci Total Environ

December 2024

Institute of Soil and Water Conservation CAS&MWR, Yangling 712100, China; College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Yangling 712100, China. Electronic address:

Agricultural soils face severe challenges, including water scarcity and heavy metal contamination. Optimizing soil remediation efficiency while minimizing inputs is essential. This study assessed the water retention and heavy metal adsorption properties of L-PH hydrogel through aqueous experiments.

View Article and Find Full Text PDF

Functional characterization and mechanism of the multidrug resistance transport potein YoeA in Bacillus subtilis.

Int J Biol Macromol

December 2024

Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210000, PR China. Electronic address:

Transport proteins are essential for bacterial resistance to antibiotics and toxins, but their mechanisms remain poorly understood in Bacillus subtilis. In the present study, overexpression of yoeA enhanced resistance to various antibiotics, with its expression induced by these antibiotics, especially penicillin and plipastatin. The ΔyoeA strain exhibited significant growth inhibition at 100 μg/mL of plipastatin, while as high as 10,000 μg/mL of iturin/surfactin are required to achieve comparable inhibition, suggesting a higher sensitivity of ΔyoeA to plipastatin.

View Article and Find Full Text PDF

Reversible and irreversible retention of heavy metals in saturated porous media: association with kaolin.

Environ Sci Process Impacts

December 2024

Anhui Bossco Environmental Protection Technology Co., Ltd, Ningguo, Anhui, 242301, China.

Contamination of heavy metals (HMs) has caused increasing concern due to their ecological toxicities and difficulties in degradation. The transport, retention, and release of HMs in porous media are highly related to their environmental fate and risk to groundwater. Column transport experiments and numerical simulations were conducted to investigate the retention and release behaviors of Cu, Pb, Cd, and Zn in the presence and absence of kaolin under varying ionic strengths and cation types.

View Article and Find Full Text PDF

Dual-Substitution Strategy Utilizing Cation Chelation and Assembly Process to Realize Solid Solution Reaction in Layered Oxide Cathode for Na-Ion Batteries.

Small

December 2024

School of Materials Science and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou, 510275, P. R. China.

NaNiMnO (NNM) is regarded as a promising cathode material for Na-ion batteries (NIBs), but suffers from irreversible phase transformations characterized by multiple voltage plateaus, resulting in poor cycle stability and inferior rate capability. To address these issues, the NaNiCuZnMnO (NNCZM) cathode material is synthesized by a cation chelation and reassembly process, which can promote a more uniform element distribution than that prepared by the solid-state method (S-NNCZM), resulting in better Na diffusion kinetics and rate capability. Replacing Ni with a small amount of Zn prevents the P2-O2 phase transformation, while replacing Ni with an appropriate amount of electrochemically active Cu eliminates Na-vacancy ordering and additionally contributes to capacity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!