F(1)-ATPase is a rotary molecular machine with a subunit stoichiometry of α(3)β(3)γ(1)δ(1)ε(1). It has a robust ATP-hydrolyzing activity due to effective cooperativity between the three catalytic sites. It is believed that the central γ rotor dictates the sequential conformational changes to the catalytic sites in the α(3)β(3) core to achieve cooperativity. However, recent studies of the thermophilic Bacillus PS3 F(1)-ATPase have suggested that the α(3)β(3) core can intrinsically undergo unidirectional cooperative catalysis (T. Uchihashi et al., Science 333:755-758, 2011). The mechanism of this γ-independent ATP-hydrolyzing mode is unclear. Here, a unique genetic screen allowed us to identify specific mutations in the α and β subunits that stimulate ATP hydrolysis by the mitochondrial F(1)-ATPase in the absence of γ. We found that the F446I mutation in the α subunit and G419D mutation in the β subunit suppress cell death by the loss of mitochondrial DNA (ρ(o)) in a Kluyveromyces lactis mutant lacking γ. In organello ATPase assays showed that the mutant but not the wild-type γ-less F(1) complexes retained 21.7 to 44.6% of the native F(1)-ATPase activity. The γ-less F(1) subcomplex was assembled but was structurally and functionally labile in vitro. Phe446 in the α subunit and Gly419 in the β subunit are located on the N-terminal edge of the DELSEED loops in both subunits. Mutations in these two sites likely enhance the transmission of catalytically required conformational changes to an adjacent α or β subunit, thereby allowing robust ATP hydrolysis and cell survival under ρ(o) conditions. This work may help our understanding of the structural elements required for ATP hydrolysis by the α(3)β(3) subcomplex.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3837939 | PMC |
http://dx.doi.org/10.1128/EC.00177-13 | DOI Listing |
Alzheimers Dement
December 2024
CNR Institute of Neuroscience, Vedano al Lambro, Italy.
Background: We recently demonstrated that large extracellular vesicles (EVs) released by Aβ-loaded microglia and carrying Aβ (Aβ-EVs) propagate synaptic dysfunction in the mouse brain by moving at the axon surface (Gabrielli et al., Brain, 2022; Falcicchia et al., Brain Commun, 2023).
View Article and Find Full Text PDFNat Commun
January 2025
DNA Replication Group, Institute of Clinical Science, Imperial College London, London, UK.
The eukaryotic helicase MCM2-7, is loaded by ORC, Cdc6 and Cdt1 as a double-hexamer onto replication origins. The insertion of DNA into the helicase leads to partial MCM2-7 ring closure, while ATP hydrolysis is essential for consecutive steps in pre-replicative complex (pre-RC) assembly. Currently it is unknown how MCM2-7 ring closure and ATP-hydrolysis are controlled.
View Article and Find Full Text PDFPLoS One
December 2024
College of Agriculture, Xinyang Agriculture and Forestry University, Xinyang, China.
The ATP-dependent zinc metalloprotease (FtsH) protein gene family is essential for plant growth, development, and stress responses. Although FtsH genes have been identified in various plant species, the FtsH gene family in wheat (Triticum aestivum) remains unstudied. In this study, we identified 11 TaFtsH genes with uneven chromosomal distribution, significant variations in gene sequence length, and differing intron numbers among individual members.
View Article and Find Full Text PDFSubcell Biochem
December 2024
Department of Macromolecular Structure, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
Viruses shield their genetic information by enclosing the viral nucleic acid inside a protein shell (capsid), in a process known as genome packaging. Viruses follow essentially two main strategies to package their genome: Either they co-assemble their genetic material together with the capsid protein or an empty shell (procapsid) is first assembled and then the genome is pumped inside the capsid by a molecular motor that uses the energy released by ATP hydrolysis. During packaging the viral nucleic acid is highly condensed through a meticulous arrangement in concentric layers inside the capsid.
View Article and Find Full Text PDFMetabolites
November 2024
Molecular Microbiology and Structural Biochemistry, UMR 5086, CNRS, University Lyon, F-69367 Lyon, France.
Phosphatases are enzymes that catalyze the hydrolysis of phosphate esters. They play critical roles in diverse biological processes such as extracellular nucleotide homeostasis, transport of molecules across membranes, intracellular signaling pathways, or vertebrate mineralization. Among them, tissue-nonspecific alkaline phosphatase (TNAP) is today increasingly studied, due to its ubiquitous expression and its ability to dephosphorylate a very broad range of substrates and participate in several different biological functions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!