Purpose: Warm-ischemia-induced injuries might be encountered during renal transplants from cadavers and healthy donors. Toll-like receptors (TLR) in ischemia-reperfusion (I/R) injury are one of the indicators of intracellular injury pathways. The intensity of ischemic injury is directly proportionate to high TLR levels. To minimize the I/R injury, we investigated TLR2 and TLR4 levels on rats, which were pretreated with tacrolimus (FK506) before I/R.

Methods: Eight Wistar albino rats in the study group were administered .01 mg/kg intramuscular tacrolimus. Administration to the study group was performed 24 and 1 h before warm ischemia. Eight rats in the control group were injected with 0.1 c.c. of distilled water. Blood samples were collected from the tail veins of all the rats on the first, second and third days. Expression levels of TLR2 and TLR4 genes were analyzed using the polymerase chain reaction method, to determine any significant difference between the control and study groups on the days when blood was taken.

Results: TLR2 (p = 0.045) and TLR4 (p = 0.022) levels in the study group were found to be statistically, and significantly, lower than those in the control group, on the second day following warm-ischemia- and reperfusion-induced injury.

Conclusions: Administration of immunosuppressive drugs to healthy donor rats led to a statistically significant reduction in the expression levels of TLR2 and TLR4 in the early period. In light of the data obtained by this study, we hypothesize that a preoperative therapy on donors might have a role in preventing I/R injury.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11255-013-0548-2DOI Listing

Publication Analysis

Top Keywords

i/r injury
16
tlr2 tlr4
12
study group
12
control group
8
expression levels
8
levels tlr2
8
injury
6
rats
6
levels
5
study
5

Similar Publications

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

High expression of SERPINE1 and CTSL in keratinocytes in pressure injury caused by ischemia-reperfusion injury.

Tissue Cell

January 2025

Institute of Regenerative Medicine, Binzhou Medical University, Yantai, Shandong 264003, PR China; Department of Histology and Embryology, Binzhou Medical University, Yantai, Shandong 264003, PR China. Electronic address:

Introduction: Pressure Injury (PI) is a complex disease process which is influenced by multiple factors, among which ischemia-reperfusion (I/R) injury is closely related to the progression of PI. But its biomarkers are still unclearly. Understanding its physiological mechanisms and related molecular biomarkers is a key to developing effective prevention and therapeutic strategies.

View Article and Find Full Text PDF

Recent studies have suggested that sVEGFR3 is involved in cardiac diseases by regulating lymphangiogenesis; however, results are inconsistent. The aim of this study was to investigate the function and mechanism of sVEGFR3 in myocardial ischemia/reperfusion injury (MI/RI). sVEGFR3 effects were evaluated in vivo in mice subjected to MI/RI, and in vitro using HL-1 cells exposed to oxygen-glucose deprivation/reperfusion.

View Article and Find Full Text PDF

Analysis of the protective effect of hydrogen sulfide over time in ischemic rat skin flaps.

Ann Chir Plast Esthet

January 2025

Department of Plastic, Reconstructive, and Aesthetic Surgery, Faculty of Medicine, Çukurova University, Adana, Turkey.

Background: Hydrogen sulfide (HS) is a widely studied gasotransmitter, and its protective effect against ischemia-reperfusion damage has been explored in several studies. Therefore, a requirement exists for a comprehensive study about HS effects on ischemia-reperfusion damage in flap surgery. The aim of this study is to examine the effect of hydrogen sulfide by creating ischemia-reperfusion injury in the vascular-stemmed island flap prepared from the rat groin area.

View Article and Find Full Text PDF

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!