Purpose: Vertebral body defects represent one of the most common orthopedic challenges. In order to advance the transfer of stem cell therapies into orthopedic clinical practice, we performed this study to evaluate the safety and efficacy of a composite bioartificial graft based on a hydroxyapatite bone scaffold (CEM-OSTETIC(®)) combined with human mesenchymal stem cells (MSCs) in a rat model of vertebral body defects.
Methods: Under general isoflurane anesthesia, a defect in the body of the L2 vertebra was prepared and left to heal spontaneously (group 1), implanted with scaffold material alone (group 2), or implanted with a scaffold together with 0.5 million MSCs (group 3) or 5 million MSCs (group 4). The rats were killed 8 weeks after surgery. Histological and histomorphometrical evaluation of the implant as well as micro-CT imaging of the vertebrae were performed.
Results: We observed a significant effect on the formation of new bone tissue in the defect in group 4 when compared to the other groups and a reduced inflammatory reaction in both groups receiving a scaffold and MSCs. We did not detect any substantial pathological changes or tumor formation after graft implantation.
Conclusions: MSCs in combination with a hydroxyapatite scaffold improved the repair of a model bone defect and might represent a safe and effective alternative in the treatment of vertebral bone defects.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3843808 | PMC |
http://dx.doi.org/10.1007/s00586-013-2991-2 | DOI Listing |
Biomimetics (Basel)
January 2025
Nuclear Cardiology Unit and CCT Service, Meir Medical Center, Kfar-Saba 95847, Israel.
Numerous efforts have been invested in previous algorithms to expose and enhance blood vessel (BV) visibility derived from clinical coronary angiography (CAG) procedures, such as noise reduction, segmentation, and background subtraction. Yet, the visibility of the BVs and their luminal content, particularly the small ones, is still limited. We propose a novel visibility enhancement algorithm, whose main body is inspired by a line completion mechanism of the visual system, i.
View Article and Find Full Text PDFBrain Sci
January 2025
Department of Normal Anatomy, The Ludwik Rydygier Collegium Medicum in Bydgoszcz, The Nicolaus Copernicus University in Toruń, 87-100 Toruń, Poland.
Objectives: The aim of the present study was to examine the growth dynamics of the first sacral vertebra and its ossification center in the human fetus, based on their linear, planar, and volumetric parameters.
Methods: The examinations were carried out on 54 human fetuses of both sexes (26 males and 28 females) aged 18-30 weeks of gestation, which had been preserved in 10% neutral formalin solution. Using CT, digital image analysis software, 3D reconstruction, and statistical methods, the size of the first sacral vertebra and its ossification center was evaluated.
Objective: Cervical degeneration involves many pathophysiological changes. Vertebral bone loss, sclerotic hyperplasia of the vertebral body and intervertebral disc degeneration (IDD) are most common degenerative factors. However, whether there is a correlation between changes in vertebral bone mass and IDD remains unclear.
View Article and Find Full Text PDFWorld J Orthop
January 2025
Department of Orthopedics, The 940 Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou 730000, Gansu Province, China.
Background: Tuberculosis is among the most devastating infectious diseases worldwide. Spinal tuberculosis is not easy to detect at an early stage, which without effective treatment often leads to spinal deformity and spinal cord damage which in turn cause complications such as paraplegia and quadriplegia. In this study, we established a model using three concentrations of bacteria and carried out a comprehensive evaluation of the model by imaging, general observations, and histopathological and bacteriological studies.
View Article and Find Full Text PDFBMC Ecol Evol
January 2025
School of GeoSciences, University of Edinburgh, Edinburgh, Scotland.
Pterosaurs were the first vertebrates to evolve active flight. The lack of many well-preserved pterosaur fossils limits our understanding of the functional anatomy and behavior of these flight pioneers, particularly from their early history (Triassic to Middle Jurassic). Here we describe in detail the osteology of an exceptionally preserved Middle Jurassic pterosaur, the holotype of Dearc sgiathanach from the Isle of Skye, Scotland.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!