Entomopathogenic marine actinomycetes as potential and low-cost biocontrol agents against bloodsucking arthropods.

Parasitol Res

Molecular and Microbiology Research Laboratory, Environmental Biotechnology Division, School of Bio Sciences and Technology, VIT University, Vellore, 632 014, Tamil Nadu, India.

Published: November 2013

A novel approach to control strategies for integrated blood-feeding parasite management is in high demand, including the use of biological control agents. The present study aims to determine the efficacy of optimized crude extract of actinomycetes strain LK1 as biological control agent against the fourth-instar larvae of Anopheles stephensi and Culex tritaeniorhynchus (Diptera: Culicidae) and adults of Haemaphysalis bispinosa, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), and Hippobosca maculata (Diptera: Hippoboscidae). Antiparasitic activity was optimized using the Plackett-Burman method, and the design was developed using the software Design-Expert version 8.0.7.1. The production of the optimized crude actinomycetes LK1 strain extract was performed using response surface methodology to optimize the process parameters of protease inhibitor activity of marine actinobacteria for the independent variables like pH, temperature, glucose, casein, and NaCl at two levels (-1 and +1). The potential actinomycetes strain was identified as Saccharomonas spp., and the metamodeling surface simulation procedure was followed. It was studied using a computer-generated experimental design, automatic control of simulation experiments, and sequential optimization of the metamodels fitted to a simulation response surface function. The central composite design (CCD) used for the analysis of treatment showed that a second-order polynomial regression model was in good agreement with the experimental results at R (2) = 0.9829 (p < 0.05). The optimized values of the variables for antioxidant production were pH 6.00, glucose 1.3%, casein 0.09%, temperature 31.23 °C, and NaCl 0.10%. The LK1 strain-optimized crude extract was purified using reversed-phase high-pressure liquid chromatography, and the isolated protease inhibitor showed antiparasitic activity. The antiparasitic activity of optimized crude extract of LK1 was tested against larvae of A. stephensi (LC₅₀ = 31.82 ppm; r(2) = 0.818) and C. tritaeniorhynchus (LC₅₀ = 26.62 ppm; r(2) = 0.790) and adults of H. bispinosa (LC₅₀ = 106.58 ppm; r(2) = 0.871), R. (B.) microplus (LC₅₀ = 92.96 ppm; r(2) = 0.913), and H. maculata (LC₅₀ = 84.90 ppm; r(2) = 0.857).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00436-013-3585-yDOI Listing

Publication Analysis

Top Keywords

optimized crude
12
crude extract
12
antiparasitic activity
12
biological control
8
actinomycetes strain
8
activity optimized
8
response surface
8
protease inhibitor
8
optimized
5
lc₅₀
5

Similar Publications

Enhanced pullulanase production through expression system optimization and biofilm-immobilized fermentation strategies.

Int J Biol Macromol

January 2025

National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China; Soochow University, Suzhou, Jiangsu 215123, PR China.

Pullulanase (PUL) plays a crucial role in breaking down α-1,6-glycosidic bonds in starch, a key process in starch processing and conversion. Based on PulB with high enzymatic activity, the expression of PUL in Bacillus subtilis was enhanced by plasmid screening, double promoter optimization, and signal peptide engineering. Furthermore, we innovatively employed a mussel foot protein to enhance the cell adhesion to carriers and utilized biofilm-based cell immobilization technology to optimize the fermentation process and stimulate biofilm formation.

View Article and Find Full Text PDF

Ganoderma resinaceum is a traditional mushroom that contains natural products, including ergothioneine (EGT), which has powerful antioxidant properties in the human body. To increase EGT yield from G. resinaceum, the optimal carbon and nitrogen sources in the culture medium were determined as 20 g/L sucrose and 4 g/L NH4Cl, respectively.

View Article and Find Full Text PDF

Bacteria, fungi, and algae are examples of microorganisms that synthesize polysaccharides, which are macromolecules that belong to the carbohydrate class. Production of polysaccharides represents an alternative to chemical and plant-derived compounds that could be used for human well-being which requires implementation of different methods standardized during the extraction and purification process. In the current investigation, Pseudolagarobasidium acaciicola, a novel fungal source of exopolysaccharide (EPS) was used which produced 2773.

View Article and Find Full Text PDF

Lipases, enzymes that perform the hydrolysis of triglycerides into fatty acids and glycerol, present a potential paradigm shift in the realms of food and detergent industries. Their enhanced efficiency, energy conservation and environmentally friendly attributes make them promising substitutes for chemical catalysts. Motivated by this prospect, this present study was targeted on the heterologous expression of a lipase gene, employing E.

View Article and Find Full Text PDF

Background And Objective: Leptospirosis is a disease caused by pathogenic prevalent in tropical countries like the Philippines. Some studies have shown that the role of currently used antibiotics for leptospirosis is unclear since trials have found no significant benefit to patient outcomes compared to placebo. This signals the need for alternative therapies, such as herbal medicines, which may provide effective therapeutic regimens in treating this infection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!