The ability of the nicotinic acetylcholine receptor (nAChR) to undergo conformational transitions is exquisitely sensitive to its surrounding lipid environment. Previous work has highlighted a conformational selection mechanism, whereby different lipids stabilize different proportions of activatable resting versus nonactivatable conformations. In the absence of anionic lipids and cholesterol, the nAChR adopts an uncoupled conformation, which binds agonist with resting state-like affinity but does not usually undergo agonist-induced conformational transitions. Very slow (minutes to hours) transitions from uncoupled to coupled (resting, open and/or desensitized) conformations, however, can occur in membranes with relatively thick hydrophobic cores. Increasing membrane hydrophobic thickness 'awakens' uncoupled nAChRs by reducing the large activation energy barrier (or barriers) leading to coupled states, thus allowing conformational transitions to occur on an experimentally tractable timescale. Lipids shape activity by modulating the relative proportions of activatable versus nonactivatable conformations and by controlling the transitions between uncoupled and coupled conformations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/nchembio.1338 | DOI Listing |
Nat Commun
January 2025
Department of Polymer Science and Engineering, Key Laboratory of High-Performance Polymer Materials and Technology of MOE, State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, China.
Overheating remains a major barrier to chip miniaturization, leading to device malfunction. Addressing the urgent need for thermal management promotes the development of solid-state electrocaloric cooling. However, enhancing passive heat dissipation through two-dimensional materials in electrocaloric polymers typically compromises the electrocaloric effect.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Single Molecule Analysis Group, Department of Chemistry, The University of Michigan, Ann Arbor, Michigan 48109, United States.
Single-molecule fluorescence resonance energy transfer (smFRET) has emerged as a pivotal technique for probing biomolecular dynamics over time at nanometer scales. Quantitative analyses of smFRET time traces remain challenging due to confounding factors such as low signal-to-noise ratios, photophysical effects such as bleaching and blinking, and the complexity of modeling the underlying biomolecular states and kinetics. The dynamic distance information shaping the smFRET trace powerfully uncovers even transient conformational changes in single biomolecules both at or far from equilibrium, relying on trace idealization to identify specific interconverting states.
View Article and Find Full Text PDFHeliyon
January 2025
School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
Cellular forces regulate an untold spectrum of living processes, such as cell migration, gene expression, and ion conduction. However, a quantitative description of mechanical control remains elusive due to the lack of general, live-cell tools to measure discrete forces between biomolecules. Here we introduce a computational pipeline for force measurement that leverages well-defined, tunable release of a mechanically activated small molecule fluorophore.
View Article and Find Full Text PDFQ Rev Biophys
January 2025
Faculty of Medicine, Department of Biophysics and Neuroscience, Wroclaw Medical University, Wrocław, Poland.
The GABA type A receptor (GABAR) belongs to the family of pentameric ligand-gated ion channels and plays a key role in inhibition in adult mammalian brains. Dysfunction of this macromolecule may lead to epilepsy, anxiety disorders, autism, depression, and schizophrenia. GABAR is also a target for multiple physiologically and clinically relevant modulators, such as benzodiazepines (BDZs), general anesthetics, and neurosteroids.
View Article and Find Full Text PDFEMBO J
January 2025
The Hormel Institute, University of Minnesota, Austin, MN, 55912, USA.
ABCB1 is a broad-spectrum efflux pump central to cellular drug handling and multidrug resistance in humans. However, how it is able to recognize and transport a wide range of diverse substrates remains poorly understood. Here we present cryo-EM structures of lipid-embedded human ABCB1 in conformationally distinct apo-, substrate-bound, inhibitor-bound, and nucleotide-trapped states at 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!