Primary hyperoxaluria type 1 (PH1) is a severe autosomal recessive inherited disorder of glyoxylate metabolism caused by mutations in the AGXT gene on chromosome 2q37.3 that encodes the hepatic peroxisomal enzyme alanine:glyoxylate aminotransferase. These mutations are found throughout the entire gene and cause a wide spectrum of clinical severity. Rare in Europe, PH1 is responsible for 13% of the end stage renal failure in the Tunisian child. In the present work, we identified the double mutation c.32C>T (Pro11Leu) and c.731T>C (p.Ile244Thr) in AGXT gene in five unrelated Tunisian families with PH1 disease. Our results provide evidence regarding the potential involvement of c.32C>T, originally described as common polymorphism, on the resulting phenotype. We also reported an extreme intrafamilial heterogeneity in clinical presentation of PH1. Despite the same genetic background, the outcome of the affected members differs widely. The significant phenotypic heterogeneity observed within a same family, with a same genotype, suggests the existence of relevant modifier factors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2013.08.083 | DOI Listing |
Kidney Int Rep
January 2025
Division of Pediatric Nephrology, Rosenheim Hospital, Germany.
Introduction: Newborn screening (NBS) programs for a defined set of eligible diseases have been enormously successful, but genomic NBS allowing for detection of additional treatable disorders has not been broadly implemented. All 3 types of primary hyperoxaluria (PH1-3) are rare autosomal recessive diseases caused by distinct defects of glyoxylate metabolism that are diagnosed genetically with certainty. Early diagnosis and treatment are mandatory to avoid renal failure or sequalae associated with persistent hyperoxaluria.
View Article and Find Full Text PDFNephrology (Carlton)
January 2025
Center for Genetics and Inherited Diseases, Taibah University Medina, Madinah, Kingdom of Saudi Arabia.
Aim: Autosomal recessive primary hyperoxalurias (PH) are genetic disorders characterised by elevated oxalate production. Mutations in genes involved in glycoxylate metabolism are the underlying cause of PH. Type 1 PH (PH1) results in malfunctioning of alanine-glyoxylate aminotransferase enzymes of liver due to a change in the genetic sequence of alanine-glyoxylate aminotransferase (AGXT) gene.
View Article and Find Full Text PDFCurr Opin Nephrol Hypertens
December 2024
Section of Nephrology, Department of Medicine, Università degli Studi di Verona, Verona, Italy.
Purpose Of Review: Primary hyperoxaluria type 1 (PH1) is an autosomal recessive disorder of hepatic glyoxylate metabolism leading to nephrolithiasis and kidney failure. PH1 is caused by mutations on the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT). The AGXT gene has two haplotypes, the major (Ma) and the minor (mi) alleles.
View Article and Find Full Text PDFHeliyon
November 2024
Laboratory of Human and Medical Genetics, Institute of Biological Sciences, Federal University of Pará (UFPA), Av. Augusto Correa, 01, 66075-110, Brazil.
Brain cancer is considered one of the most aggressive and lethal types of cancer, including primary tumors, being subdivided into milder forms such as low-grade gliomas and glioblastoma, considered the most aggressive form with higher invasion. Among the hallmarks of glioblastoma, the deregulation of mitochondrial metabolism has not yet been fully elucidated. Therefore, the search for mitochondrial biomarkers that can be used as indicators of the progression of this type of cancer is necessary.
View Article and Find Full Text PDFUrol J
December 2024
Health Sciences University Umraniye Training and Research Hospital, Department of Medical Genetics, Istanbul, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!