High-pH-induced flocculation-flotation of the hypersaline microalga Dunaliella salina.

Bioresour Technol

Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France; INRA, UMR792 Ingénierie des Systèmes Biologiques et des Procédés, F-31400 Toulouse, France; CNRS, UMR 5504, F-31400 Toulouse, France. Electronic address:

Published: November 2013

Natural autoflocculation was not observed in a Dunaliella salina hypersaline culture and the microalgae did not float without destabilization of the algal suspension. High-pH-induced flocculation by sodium hydroxide addition was chosen to induce flotation. Recovery efficiencies greater than 90% and concentration factors of around 20 were reached. An autoflocculation mechanism, with precipitation of magnesium hydroxide, is proposed to explain a sweeping flotation of D. salina cells. The influence of the flow rate of sodium hydroxide addition was also studied to anticipate the constraints related to the industrialization of this process. The flow rate of sodium hydroxide addition had no effect on the recovery efficiency and reduced the concentration factor only for abrupt injections. Natural increase of culture pH by photosynthetic activity could reduce the amount of base consumed. Non-harvested cells remained viable during pH increase and could be used as inoculum for a new culture.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.08.053DOI Listing

Publication Analysis

Top Keywords

sodium hydroxide
12
hydroxide addition
12
dunaliella salina
8
flow rate
8
rate sodium
8
high-ph-induced flocculation-flotation
4
flocculation-flotation hypersaline
4
hypersaline microalga
4
microalga dunaliella
4
salina natural
4

Similar Publications

Chitosan (CHT) is a known piezoelectric biomacromolecule; however, its usage is limited due to rapid degradation in an aqueous system. Herein, we prepared CHT film via a solvent casting method and cross-linked in an alkaline solution. Sodium hydroxide facilitated deprotonation, leading to increased intramolecular hydrogen bonding and mechanical properties.

View Article and Find Full Text PDF

Surface State Control of Apatite Nanoparticles by pH Adjusters for Highly Biocompatible Coatings.

ACS Appl Mater Interfaces

January 2025

Department of Materials Science and Technology, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata 940-2188, Japan.

Apatite nanoparticles are biocompatible nanomaterials, so their film formation on biodevices is expected to provide effective bonding with living organisms. However, the biodevice-apatite interfaces have not yet been elucidated because there is little experimental evaluation and discussion on the nanoscale interactions, as well as the apatite surface reactivities. Our group has demonstrated the biomolecular adsorption properties on a quartz crystal microbalance with dissipation (QCM-D) sensor coated with apatite nanoparticles, demonstrating the applicability of apatite nanoparticle films on devices.

View Article and Find Full Text PDF

This study comprises two distinct but interrelated parts. The first part involves optimizing the conditions for the conversion of phosphogypsum to a Ca(OH) and NaSO solution. The second part focuses on enhancing the mechanical properties of gypsum through the use of a sodium sulphate additive derived from the conversion of phosphogypsum.

View Article and Find Full Text PDF

Sustainability in Construction: Geopolymerized Coating Bricks Made with Ceramic Waste.

Materials (Basel)

December 2024

Department of Architectural Construction and Technology, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Brick is a common construction material but often ends up as waste due to suboptimal quality. In Ecuador, artisanal brick production results in inconsistent properties for construction. This research aims to repurpose discarded bricks through geopolymerization to create a sustainable building material.

View Article and Find Full Text PDF

In this study, we fully sequenced and analyzed the genome of strain 12219 and identified it as Streptomyces thermocarboxydus. The genome contained a single linear chromosome, 6,950,031 bp in size, with a GC content of 72.21 %.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!