Understanding changes in microbial structure due to biodiesel storage is important both for protecting integrity of storage systems and fuel quality management. In this work a simulated storage system was used to study the effect of biodiesel (0%, 25%, 50%, 75% and 100%) on a microbial population, which was followed by community level physiological profiling (CLPP), 16s rDNA analysis and plating in selective media. Results proved that structure and functionality were affected by biodiesel. CLPP showed at least three populations: one corresponding to diesel, one to biodiesel and one to blends of diesel and biodiesel. Analysis of 16s rDNA revealed that microbial composition was different for populations growing in diesel and biodiesel. Genera identified are known for degradation of hydrocarbons and emulsifier production. Maximum growth was obtained in biodiesel; however, microbial counts in standard media were lower for this samples. Acidification of culture media was observed at high biodiesel concentration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biortech.2013.08.068 | DOI Listing |
Toxics
December 2024
Postgraduate Program in Biotechnology and Biosciences, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina-Campus Reitor João David Ferreira Lima, Florianópolis 88040-900, SC, Brazil.
Bioremediation, involving the strategic use of microorganisms, has proven to be a cost-effective alternative for restoring areas impacted by persistent contaminants such as polycyclic aromatic hydrocarbons (PAHs). In this context, the aim of this study was to explore hydrocarbon-degrading microbial consortia by prospecting native species from soils contaminated with blends of diesel and biodiesel (20% biodiesel/80% diesel). After enrichment in a minimal medium containing diesel oil as the sole carbon source and based on 16S rRNA, Calmodulin and β-tubulin gene sequencing, seven fungi and 12 bacteria were identified.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Biosystem Engineering Department, Tarbiat Modares University (TMU), Tehran, Iran.
Today, there are environmental problems all over the world due to the emission of greenhouse gasses caused by the combustion of diesel fuel. The excessive consumption and drastic reduction of fossil fuels have prompted the leaders of various countries, including Iran, to put the use of alternative and clean energy sources on the agenda. In recent years, the use of biofuels and the addition of nanoparticles to diesel fuel have reduced pollutant emissions, improved the environment, and enhanced the physicochemical properties of the fuel.
View Article and Find Full Text PDFACS Omega
December 2024
Grupo de Química Teórica e Estrutural de Anápolis, Universidade Estadual de Goiás, 75132-903 Anápolis, GO, Brasil.
Biodiesel offers an alternative to fossil fuels, primarily because it is derived from renewable sources, with the potential to mitigate issues such as pollutant and greenhouse gas emissions, resource scarcity, and the market instability of petroleum derivatives. However, lower durability and stability pose challenges. To address this, researchers worldwide are exploring technologies that employ specific molecules to slow down biodiesel's oxidation process, thereby preserving its key physicochemical properties.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Civil Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
Due to the restrictions of the diesel engine emissions and the massive demand of energy, the fossil diesel fuel has been consumed quickly and the resources cannot suffice the demand. Alternative fuels that include bio alcohols, hydrogen and biodiesel can make up the diesel fuel depletion. Biodiesel is convenient for diesel engine operation due to its properties like fossil diesel properties.
View Article and Find Full Text PDFAnimal flesh is a major food source with economic and industrial value for consumer demand. These meats produced biowaste during and after preparation and use. Chicken intestines make up most of the waste thrown away after processing or frying.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!