Ethnopharmacological Relevance: Ginkgo biloba extract (EGb 761) is widely used to treat cerebral disorders. Clinical trials have demonstrated therapeutic benefits of EGb 761 in various vascular diseases. Because the potential pathophysiological mechanisms appear similar to those involved in aneurysmal degeneration, we postulated that EGb 761 might affect the development and progression of experimental abdominal aortic aneurysm (AAA). This study was aimed to investigate whether EGb 761 influences the development of experimental AAAs, and to explore the underlying mechanisms.
Material And Methods: C57/BL6 mice underwent abluminal application of CaCl2 to the abdominal aorta followed by gavages with either 200mg/kg EGb 761 per day or vehicle. Six weeks after AAA induction, aortic tissue was excised for further examinations.
Results: EGb 761 treatment reduced the aneurysm size compared with vehicle-treated controls. EGb 761 had no effect on hemodynamics or macrophage infiltration in the aortic wall. However, nuclear factor κB protein levels were decreased in the aortas of EGb 761 treated animals. The increased ROS production, SOD and CAT activities, and mRNA expression of p47phox nicotinamide adenine dinucleotide phosphate oxidase were attenuated by EGb 761 treatment. Moreover, administration of EGb 761 preserved the destruction of the wavy morphology of the elastin during AAA formation. Zymographic activity of matrix metalloproteinase (MMP)-9 and MMP-2 was lowered in EGb 761 treated mice.
Conclusions: These results suggest that treatment with EGb 761 in mice prevented the development of CaCl2-induced AAA. The possible mechanisms include decreased oxidative damage and inflammation, preservation of aortic wall architecture, and altered MMPs activities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2013.08.048 | DOI Listing |
Brain Sci
December 2024
Epidemiology, IQVIA, 60549 Frankfurt am Main, Germany.
Background/objectives: Previous research indicates that extract (Gbe) may contribute to slowing down the progression of dementia. This retrospective cohort study analyzed the association between Gbe prescriptions and the progression of dementia severity in a real-world setting.
Methods: This study was conducted using data from patients with an initial diagnosis of mild or moderate dementia between January 2005 and December 2022 from the IQVIA™ Disease Analyzer database.
J Inflamm Res
January 2025
Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, People's Republic of China.
Purpose: Myocardial infarction (MI) is a prevalent cardiovascular disorder affecting individuals worldwide. There is a need to identify more effective therapeutic agents to minimize cardiomyocyte damage and enhance cardioprotection. extract is extensively used to treat neurological disorders and peripheral vascular diseases.
View Article and Find Full Text PDFAm J Ther
January 2025
Faculty of Medicine, "Transilvania" University, Brasov, Romania; and.
Background: Dementia leads to cognitive decline affecting memory, thinking, and behavior. Current pharmaceutical treatments are symptomatic, with limited efficacy and significant drawbacks. Ginkgo biloba extract (EGb761) is being explored as an adjuvant therapy for dementia because of its potential neuroprotective effects.
View Article and Find Full Text PDFPhytomedicine
January 2025
Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Johannes Gutenberg-University Mainz, Mainz, Germany; Research Center for Immunotherapy (FZI), University Medical Center at the Johannes Gutenberg University Mainz, Mainz, Germany. Electronic address:
Background: Ginkgo biloba leaf extract EGb 761® has shown clinical efficacy in patients with mild cognitive impairment and dementia. However, the pharmacological action of EGb 761® in Alzheimer's disease (AD) remains unclear and molecular mechanisms targeted in the brain are not completely understood.
Hypothesis/purpose: We aimed to investigate 1) the potential sex-dependent effects of oral administration of EGb 761® in 5xFAD mice, an AD mouse model, and 2) the underlying microglial subtype responsible for the observed anti-inflammatory effects in the brain.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!