The type A influenza virus matrix protein 2 (M2) is a highly selective proton channel in the viral envelope. Because of its crucial role in viral infection and replication, the M2 channel has been a target of anti-influenza drugs. Due to the occurrence of drug-resistant mutations in the M2 channel, existing anti-influenza drugs that block the M2 channel, such as amantadine and rimantadine, have lost their efficacy against these mutant channels. Recent experimental and computational efforts have made great progress in understanding the drug resistance mechanisms of these mutations as well as designing novel drug candidates to block the mutant M2 channels. In this review, we briefly summarize the structural characteristics of the M2 channel, and then we discuss these recent studies on drug resistance and drug design of the mutant channels, focusing on the structures and energetics. We show that structural biology experiments and molecular modeling have led to the successful design of novel drugs targeting mutant M2 channels.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.tips.2013.08.003 | DOI Listing |
J Membr Biol
January 2025
Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata, India.
Inward rectifying potassium (Kir) channels play a critical role in maintaining the resting membrane potential and cellular homeostasis. The high-resolution crystal structure of homotetrameric KirBac1.1 in detergent micelles provides a snapshot of the closed state.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Department of Molecular Pathobiology, New York University, New York, NY, USA. Electronic address:
Inorganic polyphosphate (polyP) is a polymer that consists of a series of orthophosphates connected by high-energy phosphoanhydride bonds, like those found in ATP. In mammalian mitochondria, polyP has been linked to the activation of the mitochondrial permeability transition pore (mPTP). However, the details of this process are not completely understood.
View Article and Find Full Text PDFBackground: While the formation of β-amyloid plaques and neurofibrillary "tau" tangles are considered hallmarks of AD pathology, therapeutic targeting of these pathways has been unsuccessful, highlighting the necessity to define the underlying molecular mechanisms driving AD progression. Previous studies from our lab demonstrated that mitochondrial calcium (Ca) overload through neuronal ablation of the mitochondrial Na/Ca exchanger (NCLX) is sufficient to trigger 'AD-like' pathology, including mitochondrial dysfunction, amyloid deposition and tau pathology, and cognitive decline. In addition, we found significant proteomic remodeling of components of the mitochondrial calcium uniporter channel (mtCU), the primary mediator of Ca uptake, in frontal cortex samples isolated post-mortem from patients diagnosed with non-familial/sporadic AD.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572024, China; School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Danzhou 571700, China. Electronic address:
A voltage-gated sodium channel (VGSC) plays a crucial role in insect electrical signals, and it is a target for various naturally occurring and synthesized neurotoxins, including pyrethroids and dichlorodiphenyltrichloroethane. The type of agent is typically widely used to prevent and control sanitary and agricultural pests. The perennial use of insecticides has caused mutations in VGSCs that have given rise to resistance in most insects.
View Article and Find Full Text PDFChem Phys Lipids
January 2025
Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071 Castellón, Spain. Electronic address:
We present an in-depth electrophysiological analysis of Tse5, a pore-forming toxin (PFT) delivered by the type VI secretion system (T6SS) of Pseudomonas aeruginosa. The T6SS is a sophisticated bacterial secretion system that injects toxic effector proteins into competing bacteria or host cells, providing a competitive advantage by disabling other microbes and modulating their environment. Our findings highlight the dependency of Tse5 insertion on membrane charge and electrolyte concentration, suggesting an in vivo effect from the periplasmic space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!