Objective: To evaluate the ability of the third-generation (3.01) of FloTrac/Vigileo monitor (Edwards Lifesciences, Irvine, CA) to follow variations in cardiac output (∆CO) using the new polar plot approach.
Design: Prospective interventional study.
Setting: Single hospital university study.
Participants: Twenty-five patients referred for cardiac surgery.
Interventions: CO was measured simultaneously by 3 to 5 bolus thermodilution (COtd measurements), using a pulmonary artery catheter and by arterial pulse contour analysis, using the FloTrac/Vigileo (COvi). Data were collected at eight time points: before incision, after sternotomy, before and after protamine sulfate infusion, at the start of sternal closure, at the end of surgery, on arrival to intensive care unit, and after a standardized volume expansion with 500 mL of hetastarch 6%.
Measurements And Main Results: One-hundred thirty-five pairs of CO data were collected; the mean bias of all CO measurements corrected for repeated measures was 0.2 L/min with limits of agreements of -3.3 L/min and +2.9 L/min. The percentage error was 66.5%. The polar plot analysis included 71 significant ∆CO and showed a mean polar angle of -3.4 degrees with 95% polar percentage error equivalent limits of -61 to 55; 69% of analysed data points fell within the 30-degree limits and provided a correct polar concordance rate.
Conclusions: Third-generation FloTrac/Vigileo software still lacks the accuracy to reliably detect changes in cardiac output (∆CO) in cardiac surgery. Improvements to FloTrac/Vigileo CO algorithm and software still are needed in this particular setting.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1053/j.jvca.2013.03.008 | DOI Listing |
J Physiol
January 2025
Center for Developmental Health, Oregon Health & Science University, Portland, OR, USA.
Robust preclinical models of asymmetric ventricular loading in late gestation reflecting conditions such as hypoplastic left heart syndrome are lacking. We characterized the morphometry and microvascular function of the hypoplastic left ventricle (LV) and remaining right ventricle (RV) in a sham-controlled late gestation fetal lamb model of impaired left ventricular inflow (ILVI). Singleton fetuses were instrumented at ∼120 days gestational age (dGA; term is ∼147 days) with vascular catheters, an aortic flow probe and a deflated left atrial balloon.
View Article and Find Full Text PDFCrit Care
January 2025
División de Terapia Intensiva, Hospital Juan A. Fernández, Buenos Aires, Argentina.
The advancements in cardiovascular imaging over the past two decades have been significant. The miniaturization of ultrasound devices has greatly contributed to their widespread adoption in operating rooms and intensive care units. The integration of AI-enabled tools has further transformed the field by simplifying echocardiographic evaluations and enhancing the reproducibility of hemodynamic measurements, even for less experienced operators.
View Article and Find Full Text PDFJ Mol Cell Cardiol
December 2024
Kinesiology & Health, University of Wyoming, Laramie, WY, USA; Zoology & Physiology, University of Wyoming, Laramie, WY, USA. Electronic address:
The age of the U.S. population is increasing alongside a growing burden of age-related cardiovascular disease.
View Article and Find Full Text PDFAnn Intensive Care
January 2025
Intensive Care Department, Hospital Israelita Albert Einstein, Av. Albert Einstein, 627/701 - Morumbi, São Paulo, CEP: 05651-901, SP, Brasil.
Sheldon Magder's article on applying Arthur Guyton's principles to clinical fluid management provides valuable insights into optimizing hemodynamics in critically ill patients. While emphasizing the role of right atrial pressure (RAP) in assessing cardiac output, challenges arise due to RAP's variable accuracy and the oversimplification of cardiovascular dynamics. Integrating RAP with dynamic assessments and bedside ultrasound can enhance fluid management strategies.
View Article and Find Full Text PDFA A Pract
January 2025
From the Department of Anesthesia, Indiana University School of Medicine, Indianapolis, Indiana.
Interscalene blocks, commonly used for shoulder surgery analgesia, often cause transient phrenic nerve palsy, leading to hemi-diaphragmatic paresis. This complication is particularly problematic in patients with pulmonary comorbidities and has been extensively investigated. However, its impact on patients with Fontan physiology remains less understood with limited representation in the literature.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!